Answer:
Option (d) 2 min/veh
Explanation:
Data provided in the question:
Average time required = 60 seconds
Therefore,
The maximum capacity that can be accommodated on the system, μ = 60 veh/hr
Average Arrival rate, λ = 30 vehicles per hour
Now,
The average time spent by the vehicle is given as
⇒ 
thus,
on substituting the respective values, we get
Average time spent by the vehicle = 
or
Average time spent by the vehicle = 
or
Average time spent by the vehicle = 
or
Average time spent by the vehicle =
hr/veh
or
Average time spent by the vehicle =
min/veh
[ 1 hour = 60 minutes]
thus,
Average time spent by the vehicle = 2 min/veh
Hence,
Option (d) 2 min/veh
Answer:
Explanation:
<u><em>General Considerations</em></u>
The design of the yard will affect the natural surface and subsurface drainage pattern of a watershed or individual hillslope. Yard drainage design has as its basic objective the reduction or elimination of energy generated by flowing water. The destructive power of flowing water increases exponentially as its velocity increases. Therefore, water must not be allowed to develop sufficient volume or velocity so as to cause excessive wear along ditches, below culverts, or along exposed running surfaces, cuts, or fills.
A yard drainage system must satisfy two main criteria if it is to be effective throughout its design life:
1. It must allow for a minimum of disturbance of the natural drainage pattern.
2.It must drain surface and subsurface water away from the roadway and dissipate it in a way that prevents excessive collection of water in unstable areas and subsequent downstream erosion
The diagram below ilustrate diffrent sturcture of yard to be consider before planing to utiliza rainwater
Answer:
1700kJ/h.K
944.4kJ/h.R
944.4kJ/h.°F
Explanation:
Conversions for different temperature units are below:
1K = 1°C + 273K
1R = T(K) * 1.8
= (1°C + 273) * 1.8
1°F = (1°C * 1.8) + 32
Q/delta T = 1700kJ/h.°C
T (K) = 1700kJ/h.°C
= 1700kJ/K
T (R) = 1700kJ/h.°C
= 1700kJ/h.°C * 1°C/1.8R
= 944.4kJ/h.R
T (°F) = 1700kJ/h.°C
= 1700kJ/h.°C * 1°C/1.8°F
= 944.4kJ/h.°F
Note that arithmetic operations like subtraction and addition of values do not change or affect the value of a change in temperature (delta T) hence, the arithmetic operations are not reflected in the conversion. Illustration: 5°C - 3°C
= 2°C
(273+5) - (273+3)
= 2 K
analyzing building materials???????????? but i can try i think it is analyzing the materials of the building
Answer:
5320.6 Pascal
Explanation:
Manometer is a pressure measuring device use to measure gas pressure .
Pressure difference in Manometer is a function of density,gravity and the height difference of the liquid.
Pressure difference = density x acceleration due to gravity x difference in height of liquid
Density of liquid = specific gravity of object x density of water.
Density of water = 997 kg/m^3
Specific gravity of liquid = 1.7
Density of liquid = 997 x 1.7 =1694.9kg/m^3
g= 9.81 m/s^2
h =320mm = 0.320m
Pressure difference = 1694.9 x 9.81 x 0.320 = 5320.6 Pascal