Answer: The energy system related to your question is missing attached below is the energy system.
answer:
a) Work done = Net heat transfer
Q1 - Q2 + Q + W = 0
b) rate of work input ( W ) = 6.88 kW
Explanation:
Assuming CPair = 1.005 KJ/Kg/K
<u>Write the First law balance around the system and rate of work input to the system</u>
First law balance ( thermodynamics ) :
Work done = Net heat transfer
Q1 - Q2 + Q + W = 0 ---- ( 1 )
rate of work input into the system
W = Q2 - Q1 - Q -------- ( 2 )
where : Q2 = mCp T = 1.65 * 1.005 * 293 = 485.86 Kw
Q2 = mCp T = 1.65 * 1.005 * 308 = 510.74 Kw
Q = 18 Kw
Insert values into equation 2 above
W = 6.88 Kw
The magnetic force on a free moving charge is perpendicular to both the velocity of the charge and the magnetic field with direction given by the right hand rule. The force is given by the charge times the vector product of velocity and magnetic field.
Answer:
minimum factor of safety for fatigue is = 1.5432
Explanation:
given data
AISI 1018 steel cold drawn as table
ultimate strength Sut = 63.800 kpsi
yield strength Syt = 53.700 kpsi
modulus of elasticity E = 29.700 kpsi
we get here
=
...........1
here kb and kt = 1 combined bending and torsion fatigue factor
put here value and we get
=
= 12 kpsi
and
=
...........2
put here value and we get
=
= 17.34 kpsi
now we apply here goodman line equation here that is
...................3
here Se = 0.5 × Sut
Se = 0.5 × 63.800 = 31.9 kspi
put value in equation 3 we get
solve it we get
FOS = 1.5432
Use protective gear. Use insulated tools, Wear flame resistant clothing, safety glasses, and insulation gloves, Remove watches or other jewelry, Stand on an insulation mat. 03. Never connect the insulation tester to energized conductors or energized equipment and always follow the manufacturer's recommendations. When installing new electrical machinery or equipment, testing insulation resistance is important for two reasons. First, it ensures that the insulation is in adequate condition to begin operation. ... The test is accomplished by applying DC voltage through the de-energized circuit using an insulation tester. Insulation resistance should be approximately one megohm for each 1,000 volts of operating voltage, with a minimum value of one megohm. For example, a motor rated at 2,400 volts should have a minimum insulation resistance of 2.4 megohms.
Answer:
The initial temperature will be "385.1°K" as well as final will be "128.3°K".
Explanation:
The given values are:
Helium's initial volume, v₁ = 6 m³
Mass, m = 1.5 kg
Final volume, v₂ = 2 m³
Pressure, P = 200 kPa
As we know,
Work, 
On putting the estimated values, we get
⇒ 
⇒ 
⇒ 
Now,
Gas ideal equation will be:
⇒ 
On putting the values. we get
⇒ 
⇒ 
⇒
(Initial temperature of helium)
and,
⇒ 
On putting the values, we get
⇒ 
⇒ 
⇒
(Final temperature of helium)