Answer:
v > -21
Step-by-step explanation:
-1/3v - 2 < 5
add 2
-1/3v < 7
multiply by -3
(if negative, switch sign)
v > -21
Answer:
(4,3,2)
Step-by-step explanation:
We can solve this via matrices, so the equations given can be written in matrix form as:
![\left[\begin{array}{cccc}3&2&1&20\\1&-4&-1&-10\\2&1&2&15\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D3%262%261%2620%5C%5C1%26-4%26-1%26-10%5C%5C2%261%262%2615%5Cend%7Barray%7D%5Cright%5D)
Now I will shift rows to make my pivot point (top left) a 1 and so:
![\left[\begin{array}{cccc}1&-4&-1&-10\\2&1&2&15\\3&2&1&20\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-4%26-1%26-10%5C%5C2%261%262%2615%5C%5C3%262%261%2620%5Cend%7Barray%7D%5Cright%5D)
Next I will come up with algorithms that can cancel out numbers where R1 means row 1, R2 means row 2 and R3 means row three therefore,
-2R1+R2=R2 , -3R1+R3=R3
![\left[\begin{array}{cccc}1&-4&-1&-10\\0&9&4&35\\0&14&4&50\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-4%26-1%26-10%5C%5C0%269%264%2635%5C%5C0%2614%264%2650%5Cend%7Barray%7D%5Cright%5D)

![\left[\begin{array}{cccc}1&-4&-1&-10\\0&1&\frac{4}{9}&\frac{35}{9}\\0&14&4&50\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%26-4%26-1%26-10%5C%5C0%261%26%5Cfrac%7B4%7D%7B9%7D%26%5Cfrac%7B35%7D%7B9%7D%5C%5C0%2614%264%2650%5Cend%7Barray%7D%5Cright%5D)
4R2+R1=R1 , -14R2+R3=R3
![\left[\begin{array}{cccc}1&0&\frac{7}{9}&\frac{50}{9}\\0&1&\frac{4}{9}&\frac{35}{9}\\0&0&-\frac{20}{9}&-\frac{40}{9}\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26%5Cfrac%7B7%7D%7B9%7D%26%5Cfrac%7B50%7D%7B9%7D%5C%5C0%261%26%5Cfrac%7B4%7D%7B9%7D%26%5Cfrac%7B35%7D%7B9%7D%5C%5C0%260%26-%5Cfrac%7B20%7D%7B9%7D%26-%5Cfrac%7B40%7D%7B9%7D%5Cend%7Barray%7D%5Cright%5D)

![\left[\begin{array}{cccc}1&0&\frac{7}{9}&\frac{50}{9}\\0&1&\frac{4}{9}&\frac{35}{9}\\0&0&1&2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%26%5Cfrac%7B7%7D%7B9%7D%26%5Cfrac%7B50%7D%7B9%7D%5C%5C0%261%26%5Cfrac%7B4%7D%7B9%7D%26%5Cfrac%7B35%7D%7B9%7D%5C%5C0%260%261%262%5Cend%7Barray%7D%5Cright%5D)
, 
![\left[\begin{array}{cccc}1&0&0&4\\0&1&0&3\\0&0&1&2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D1%260%260%264%5C%5C0%261%260%263%5C%5C0%260%261%262%5Cend%7Barray%7D%5Cright%5D)
Therefore the solution to the system of equations are (x,y,z) = (4,3,2)
Note: If answer choices are given, plug them in and see if you get what is "equal to". Meaning plug in 4 for x, 3 for y and 2 for z in the first equation and you should get 20, second equation -10 and third 15.
You need to state the answers :)
Answer:
Step-by-step explanation:
In each case we find the discriminant b^2 - 4ac.
If the discriminant is negative, we have two unequal, complex roots.
If the discriminant is zero. we have two equal, real roots.
If the discriminant is positive, we have two unequal real roots.
#51: 8v^2 - 12v + 9: the discriminant is (-12)^2 - 4(8)(9) = -144. we have two unequal, complex roots
#52: (-11)^2 - 4(4)(-14) = 121 + 224 = 345. we have two unequal real roots.
#53: (-5)^2 - 4(7)(6) = 25 - 168 (negative). we have two unequal, complex roots.
#54: (4)^2 - 16 = 0. We have two equal, real roots.