Answer:
450
Step-by-step explanation:
Solution for What is 75 percent of 600:
75 percent * 600 =
(75:100)* 600 =
(75* 600):100 =
45000:100 = 450
Now we have: 75 percent of 600 = 450
Question: What is 75 percent of 600?
Percentage solution with steps:
Step 1: Our output value is 600.
Step 2: We represent the unknown value with $x$x.
Step 3: From step 1 above,$600=100\%$600=100%.
Step 4: Similarly, $x=75\%$x=75%.
Step 5: This results in a pair of simple equations:
$600=100\%(1)$600=100%(1).
$x=75\%(2)$x=75%(2).
Step 6: By dividing equation 1 by equation 2 and noting that both the RHS (right hand side) of both
equations have the same unit (%); we have
600
x=
100%
75%
Step 7: Again, the reciprocal of both sides gives
x
600=
75
100
Therefore, $75\%$75% of $600$600 is $450$
Answer:
Step-by-step explanation:
<u>Solving in steps</u>
- 7^-1/7^2 =
- 7^-1 × 7^-2 =
- 7^(-1 - 2) =
- 7^-3
The correct format of the question is
At the end of 2006, the population of Riverside was 400 people. The population for this small town can be modeled by the equation below, where t represents the number of years since the end of 2006 and P represents the number of people.
Based on this model, approximately what was the increase in the population of Riverside at the end of 2009 compared to the end of 2006?
(A) 291
(B) 691
(C) 1040
(D) 1440
Answer:
The increase in the population at the end of 2009 is 291 people
Step-by-step explanation:
We are given the equation as
where
P = No of People
t= No of Years
it is given that in the year 2006 the population is 400
this will only happen when we take t= 0
so for
Year value of t
2006- t = 0
2007- t = 1
2008- t = 2
2009 t = 3
No of people in 2009 will be

= 400*1.728
P = 691.2
Since the equation represents no of people so it can't be in decimals, Therefore the population will be 691
Increase = P(2009) - P(2006)
= 691 - 400
= 291
The increase in the population at the end of 2009 is 291 people.
Answer:
Its 280
Step-by-step explanation:
I got it right on A P E X