Answer:
A. 72.34mol/min
B. 76.0%
Explanation:
A.
We start by converting to molar flow rate. Using density and molecular weight of hexane
= 1.59L/min x 0.659g/cm³ x 1000cm³/L x 1/86.17
= 988.5/86.17
= 11.47mol/min
n1 = n2+n3
n1 = n2 + 11.47mol/min
We have a balance on hexane
n1y1C6H14 = n2y2C6H14 + n3y3C6H14
n1(0.18) = n2(0.05) + 11.47(1.00)
To get n2
(n2+11.47mol/min)0.18 = n2(0.05) + 11.47mol/min(1.00)
0.18n2 + 2.0646 = 0.05n2 + 11.47mol/min
0.18n2-0.05n2 = 11.47-2.0646
= 0.13n2 = 9.4054
n2 = 9.4054/0.13
n2 = 72.34 mol/min
This value is the flow rate of gas that is leaving the system.
B.
n1 = n2 + 11.47mol/min
72.34mol/min + 11.47mol/min
= 83.81 mol/min
Amount of hexane entering condenser
0.18(83.81)
= 15.1 mol/min
Then the percentage condensed =
11.47/15.1
= 7.59
~7.6
7.6x100
= 76.0%
Therefore the answers are a.) 72.34mol/min b.) 76.0%
Please refer to the attachment .
Answer:
See attached picture.
Explanation:
See attached picture for explanation.
(a) If a kitten weighs 99 grams at birth, it is at 5.72 percentile of the weight distribution.
(b) For a kitten to be at 90th percentile, the minimum weight is 146.45 g.
<h3>
Weight distribution of the kitten</h3>
In a normal distribution curve;
- 2 standard deviation (2d) below the mean (M), (M - 2d) is at 2%
- 1 standard deviation (d) below the mean (M), (M - d) is at 16 %
- 1 standard deviation (d) above the mean (M), (M + d) is at 84%
- 2 standard deviation (2d) above the mean (M), (M + 2d) is at 98%
M - 2d = 125 g - 2(15g) = 95 g
M - d = 125 g - 15 g = 110 g
95 g is at 2% and 110 g is at 16%
(16% - 2%) = 14%
(110 - 95) = 15 g
14% / 15g = 0.93%/g
From 95 g to 99 g:
99 g - 95 g = 4 g
4g x 0.93%/g = 3.72%
99 g will be at:
(2% + 3.72%) = 5.72%
Thus, if a kitten weighs 99 grams at birth, it is at 5.72 percentile of the weight distribution.
<h3>Weight of the kitten in the 90th percentile</h3>
M + d = 125 + 15 = 140 g (at 84%)
M + 2d = 125 + 2(15) = 155 g ( at 98%)
155 g - 140 g = 15 g
14% / 15g = 0.93%/g
84% + x(0.93%/g) = 90%
84 + 0.93x = 90
0.93x = 6
x = 6.45 g
weight of a kitten in 90th percentile = 140 g + 6.45 g = 146.45 g
Thus, for a kitten to be at 90th percentile, the approximate weight is 146.45 g
Learn more about standard deviation here: brainly.com/question/475676
#SPJ1
Answer:
The total design can be summarized as follows:
AC motor 55 hp, 750 rpm as a driver
Service factor 1.0
Design power 5 hp
No. 40 chain, 0.50 in pitch, 1 strands
17 teeth, 2.72 in pitch dia, 1 strand small sprocket
39 teeth, 7.46 in pitch dia, 1 strand large sprocket
1 strand of length 54 in
Center distance of 19.9 in
Actual Output speed of 326.9 rpm
Type B lubrication
Explanation: