Answer:
375 KPa
Explanation:
From the question given above, the following data were obtained:
Initial pressure (P₁) = 125 KPa
Initial temperature (T₁) = 300 K
Final temperature (T₂) = 900 K
Final pressure (P₂) =?
The new (i.e final) pressure of the gas can be obtained as follow:
P₁/T₁ = P₂/T₂
125 / 300 = P₂ / 900
Cross multiply
300 × P₂ = 125 × 900
300 × P₂ = 112500
Divide both side by 300
P₂ = 112500 / 300
P₂ = 375 KPa
Thus, the new pressure of the gas is 375 KPa
Answer:
please help you are not the intended recipient
Answer:
b). The same for all pipes independent of the diameter
Explanation:
We know,


From the above formulas we can conclude that the thermal resistance of a substance mainly depends upon heat transfer coefficient,whereas radius has negligible effects on heat transfer coefficient.
We also know,
Factors on which thermal resistance of insulation depends are :
1. Thickness of the insulation
2. Thermal conductivity of the insulating material.
Therefore from above observation we can conclude that the thermal resistance of the insulation is same for all pipes independent of diameter.
Answer:
Electromechanical systems or devices are systems or devices that involves the interaction between electrical systems and mechanical systems in which the motion of mechanical parts is converted to electrical energy or made to interact with energy or in which electrical energy is converted to mechanical energy or interacts with a moving mechanical system
Therefore;
Electromechanical systems convert <u>electrical energy</u> input into a <u>mechanical energy</u> output
Explanation:
Answer:
ICC
Explanation:
The International Building Code (IBC) is a model building code developed by the International Code Council (ICC). It has been adopted for use as a base code standard by most jurisdictions in the United States.