The false statement about onStep is: B. The default number of steps per second is 30.
<h3>What is an onStep?</h3>
An onStep can be defined as a computerized telescope goto controller that is designed and developed to <u>animate shapes</u> while using it on a variety of mounting systems such as forks.
<h3>The characteristics of an onStep.</h3>
In Engineering, some of the characteristics that are associated with an onStep include the following:
- The onStep function can be called without user input.
- It can be used to animate shapes without user input.
- It only runs a certain number of times.
In conclusion, the default number of steps per second for onStep isn't 30.
Read more on onStep here: brainly.com/question/25619349
Answer:
the overall heat transfer coefficient of this heat exchanger is 1855.8923 W/m²°C
Explanation:
Given:
d₁ = diameter of the tube = 1 cm = 0.01 m
d₂ = diameter of the shell = 2.5 cm = 0.025 m
Refrigerant-134a
20°C is the temperature of water
h₁ = convection heat transfer coefficient = 4100 W/m² K
Water flows at a rate of 0.3 kg/s
Question: Determine the overall heat transfer coefficient of this heat exchanger, Q = ?
First at all, you need to get the properties of water at 20°C in tables:
k = 0.598 W/m°C
v = 1.004x10⁻⁶m²/s
Pr = 7.01
ρ = 998 kg/m³
Now, you need to calculate the velocity of the water that flows through the shell:

It is necessary to get the Reynold's number:

Like the Reynold's number is greater than 10000, the regime is turbulent. Now, the Nusselt's number:

The overall heat transfer coefficient:

Here

Substituting values:

Answer and Explanation:
Gas chromatography separates compounds depending on their **polarity and volatility**. Benzene, m-xylene, and toluene have similar **polarities**, therefore, the main basis for separation is **volatility**. The more volatile a component the ** higher its vapor pressure**, hence the more time it spends in the **gaseous mobile phase**, giving it a **shorter** retention time. Therefore, components of a liquid mixture will elute in order of **increasing boiling points/decreasing volatilities/increasing polarities with the stationary phase**.
Answer:

Explanation:
Given

Required
Convert to standard form

From laws of indices

So,
is equivalent to





Hence, the standard form of
is 
Answer: *changed*
Explanation: Because you peed