Answer:
Following are the proving to this question:
Explanation:
using the energy equation for entry and exit value
:

where




L.H.S = R.H.S
Answer:
Explanation:
We use kinetic friction when a body is moving i.e.
for calculations.
Static friction is used when a body is in rest while kinetic friction is used when a body is moving and its value is quite low as compared to static friction .
Static friction value increases as we apply more force while kinetic friction occurs when there is relative motion between bodies.
Answer:
d) 9.55 psi
Explanation:
pressure at the bottom is =ρgh
weight density is ρg=55 lb/ft³
h=25ft
pressure at the bottom is =
=1375psf
1 ft = 12 inch
pressure at bottom =
= 9.55 psi
so, answer will be option (d) which is 9.55 psi
Answer:
vB = - 0.176 m/s (↓-)
Explanation:
Given
(AB) = 0.75 m
(AB)' = 0.2 m/s
vA = 0.6 m/s
θ = 35°
vB = ?
We use the formulas
Sin θ = Sin 35° = (OA)/(AB) ⇒ (OA) = Sin 35°*(AB)
⇒ (OA) = Sin 35°*(0.75 m) = 0.43 m
Cos θ = Cos 35° = (OB)/(AB) ⇒ (OB) = Cos 35°*(AB)
⇒ (OB) = Cos 35°*(0.75 m) = 0.614 m
We apply Pythagoras' theorem as follows
(AB)² = (OA)² + (OB)²
We derive the equation
2*(AB)*(AB)' = 2*(OA)*vA + 2*(OB)*vB
⇒ (AB)*(AB)' = (OA)*vA + (OB)*vB
⇒ vB = ((AB)*(AB)' - (OA)*vA) / (OB)
then we have
⇒ vB = ((0.75 m)*(0.2 m/s) - (0.43 m)*(0.6 m/s) / (0.614 m)
⇒ vB = - 0.176 m/s (↓-)
The pic can show the question.
Answer:
both statement is correct
Explanation:
Flywheel engine uses to reduce fluctuations.
And
FlexPlate is a metal disk that connects the output from the engine to the input of the torque converter. This will replace the flywheel
so that both statement is correct