The ch4 molecule exhibits hydrogen bonding.
This statement is false. A CH4 molecule do not have a hydrogen bonding instead it has dipole dipole attraction.
Hydrogen bonding occurs when a hydrogen atom is covalently bonded to an N, O, or F atom.
This would be a true statement. A hydrogen bond is present when an atom of hydrogen shares electrons with O, N or F atom.
A hydrogen bond is equivalent to a covalent bond.
This is a false statement. A hydrogen bond is an intermolecular force of attraction while covalent bond is a intramolecular force. So, they would mean different things.
a hydrogen bond is possible with only certain hydrogen-containing compounds.
This would be true. Without the presence of an hydrogen atom definitely there would be no hydrogen bond.
a hydrogen atom acquires a partial positive charge when it is covalently bonded to an f atom.
This would be true since a HF is a polar molecule.
Looks like 3*.5 mol of N, or 1.5*.5 N2
<span>convert that to grams.</span>
No. It will not still be full. The reason being is because when it melts, it's almost the same thing as compacting things down into another object (container). Therefore, you will have some room left i the glass. Like, if your trashcan was over-flowing, and you push it down to compact it so you can add more trash. So when the ice melts, it will not be full.
Answer:
The equation for molarity is moles/liter for the first question you would do 0.256/0.143 liters to get 1.790 mol/L
Explanation:
The second problem you would do need to find the moles of NaCl which you would do by doing 4.89 g/58.44g/mol= 0.08367 then do 0.08367/0.600= 0.139 mol/L
The third problem would be the same steps as the second one.
The fourth problem would be (0.460M)(5.50L)= 2.53 moles
Answer:
Mass = 8.46 g
Explanation:
Given data:
Mass of water produced = ?
Mass of glucose = 20 g
Mass of oxygen = 15 g
Solution:
Chemical equation:
C₆H₁₂O₆ + 6O₂ → 6H₂O + 6CO₂
Number of moles of glucose:
Number of moles = mass/molar mass
Number of moles = 20 g/ 180.16 g/mol
Number of moles = 0.11 mol
Number of moles of oxygen:
Number of moles = mass/molar mass
Number of moles = 15 g/ 32 g/mol
Number of moles = 0.47 mol
now we will compare the moles of water with oxygen and glucose.
C₆H₁₂O₆ : H₂O
1 : 6
0.11 : 6/1×0.11 = 0.66
O₂ : H₂O
6 : 6
0.47 : 0.47
Less number of moles of water are produced by oxygen thus it will limit the yield of water and act as limiting reactant.
Mass of water produced:
Mass = number of moles × molar mass
Mass = 0.47 mol ×18 g/mol
Mass = 8.46 g