Answer: After 4710 seconds, 1/8 of the compound will be left
Explanation:
Using the formulae
Nt/No = (1/2)^t/t1/2
Where
N= amount of the compound present at time t
No= amount of compound present at time t=0
t= time taken for N molecules of the compound to remain = 4710 seconds
t1/2 = half-life of compound = 1570 seconds
Plugging in the values, we have
Nt/No = (1/2)^(4710s/1570s)
Nt/No = (1/2)^3
Nt/No= 1/8
Therefore after 4710 seconds, 1/8 molecules of the compound will be left
Answer:
The volume of helium at 25.0 °C is 60.3 cm³.
Explanation:
In order to work with ideal gases we need to consider absolute temperatures (Kelvin). To convert Celsius to Kelvin we use the following expression:
K = °C + 273.15
The initial and final temperatures are:
T₁ = 25.0 + 273.15 = 298.2 K
T₂ = -196.0 + 273.15 = 77.2 K
The volume at 77.2 K is V₂ = 15.6 cm³. To calculate V₁ in isobaric conditions we can use Charle's Law.
