Answer:
(3x - 15)/5
Step-by-step explanation:
To find 30% of x+(x-10) we divide x+(x-10) by 100 then multiply it by 30
(x+(x-10)) ÷ 100 × 30 = (3x - 15)/5
Fill in each slot in the square with variables <em>a</em>, <em>b</em>, <em>c</em>, <em>d</em>, and <em>e</em>, in order from left-to-right, top-to-bottom. In a magic square, the sums across rows, columns, and diagonals all add up to the same number called the <em>magic sum</em>.
The magic sum is -3.9, since "diagonal 2" (bottom left to top right) has all the information we need:
3 + (-1.3) + (-5.6) = -3.9
Use this to find the remaining elements
<em>a</em> + <em>b</em> + (-5.6) = -3.9
<em>c</em> + (-1.3) + <em>d</em> = -3.9
3 + <em>e</em> + 0.02 = -3.9
<em>a</em> + <em>c</em> + 3 = -3.9
<em>b</em> + (-1.3) + <em>e</em> = -3.9
(-5.6) + <em>d</em> + 0.02 = -3.9
- diagonal 1 (top left to bottom right):
<em>a</em> + (-1.3) + 0.02 = -3.9
You will find
<em>a</em> = -2.62
<em>b</em> = 4.32
<em>c</em> = -4.28
<em>d</em> = 1.68
<em>e</em> = -6.92
Answer:
See Explanation
Step-by-step explanation:
<em>The question is incomplete as what is required of the question is not stated.</em>
<em>However, since the question is only limited to distance, a likely question could be to calculate the distance from Bayville to Colleyville.</em>
Represent the distance from Atlanta to Colleyville with AC
Represent the distance from Atlanta to Bayville with AB
Represent the distance from Bayville to Colleyville with BC
So, we have that:


The relationship between AB, AC and BC is:

Make BC the subject of formula:


Convert fraction to decimal


<em>Hence, the distance from Bayville to Colleyville is 14.8 miles</em>
14x huggugihhivuvivihihuhuhij