Answer:
For any given element, ionization energy increases as subsequent electrons are removed. For example, the energy required to remove an electron from neutral chlorine is 1251 kJ/mol. ... An even sharper increase in ionization energy is witnessed when inner-shell, or core, electrons are removed.
Hope it helps :)
V ( HCl ) = 45.00 mL in liters : 45.00 / 1000 => 0.045 L
M ( HCl ) = ?
V ( NaOH ) = 25.00 / 1000 => 0.025 L
M ( NaOH) = 0.2000 M
number of moles NaOH :
n = M x V = 0.2000 x 0.025 => 0.005 moles of NaOH
Mole ratio:
HCl + NaOH = NaCl + H2O
1 mole HCl ---------- 1 mole NaOH
? mole HCl ---------- 0.005 moles NaOH
moles HCl = 0.005 x 1 / 1
= 0.005 moles of HCl :
M ( HCl ) = n / V
M ( HCl ) = 0.005 / 0.045
= 0.1111 M
hope this helps!
Answer:
true
Explanation:
The hydroxyl group is a functional group formed by an oxygen atom and a hydrogen atom.
Answer:
D: lose an electron
Explanation:
when an atom loses an electron it's positively charged and when it gain an electron it is negatively charged
The balanced chemical reaction would be:
KHC8H4O4<span> (aq) + </span>NaOH<span> (aq) → NaKC8H4O4 (aq) + H2O.
The concentration of the NaOH is equal 0.1 M. We use this and the volume given above to determine the mass of KH</span>C8H4O4. We do as follows:
0.1 mol / L NaOH (.015 L) ( 1 mol KHC8H4O4 / 1 mol NaOH) (204 g / 1 mol) = 0.306 g KHC8H4O4