According to Henry's law, solubility of solution is directly proportional to partial pressure thus,

Solubility at pressure 3.08 atm is 72.5/100, solubility at pressure 8 atm should be calculated.
Putting the values in equation:

On rearranging,

Therefore, solubility will be 1.88 mg of
gas in 1 g of water or, 188 mg of tex]N_{2}[/tex] gas in 100 g of water.
Since the substance absorbs heat, it is expected that the temperature will rise. The formula for the internal energy of a substance is given by the equation:
ΔU = mCpΔT
where:
ΔU = internal energy
m = mass of substance
Cp = specific heat capacity of substance
ΔT = change in temperature
ΔU = 2722 Joules = 16.2 grams (9.22 J/g-°C) (Tf - 26°C)
This gives a final temperature of Tf = 44.22 °C
Some policies they might do is to put limits on water usage, like making sure that people don't use too much water in baths and when they are tending to their gardens.
<u>Gas</u>
<em>Gas</em><em> </em><em>particles</em><em> </em><em>got</em><em> </em><em>the</em><em> </em><em>most</em><em> </em><em>energy</em><em> </em><em>because of how freely the molecules move</em>
Hope this helped you, have a good day bro cya)
Answer:
52.1 degrees C
Explanation:
We need to use the equation: q = mCΔT, where m is the mass in grams, C is the specific heat capacity, and ΔT is the change in temperature.
Here, m = 10 g and q = 125 J. The heat capacity of iron is about 0.461 J/(g * C). And, our initial temperature is 25. So:
125 J = (10 g) * (0.461 J/(g * C)) * (T_f - 25)
Solving for T_f (final temp), we get: 52.1 degrees C
Hope this helps!