Answer:

Step-by-step explanation:
The 90th percentile of a normally distributed curve occurs at 1.282 standard deviations. Similarly, the 10th percentile of a normally distributed curve occurs at -1.282 standard deviations.
To find the
percentile for the television weights, use the formula:
, where
is the average of the set,
is some constant relevant to the percentile you're finding, and
is one standard deviation.
As I mentioned previously, 90th percentile occurs at 1.282 standard deviations. The average of the set and one standard deviation is already given. Substitute
,
, and
:

Therefore, the 90th percentile weight is 5.1282 pounds.
Repeat the process for calculating the 10th percentile weight:

The difference between these two weights is
.
Answer: The square root of π has attracted attention for almost as long as π itself. When you’re an ancient Greek mathematician studying circles and squares and playing with straightedges and compasses, it’s natural to try to find a circle and a square that have the same area. If you start with the circle and try to find the square, that’s called squaring the circle. If your circle has radius r=1, then its area is πr2 = π, so a square with side-length s has the same area as your circle if s2 = π, that is, if s = sqrt(π). It’s well-known that squaring the circle is impossible in the sense that, if you use the classic Greek tools in the classic Greek manner, you can’t construct a square whose side-length is sqrt(π) (even though you can approximate it as closely as you like); see David Richeson’s new book listed in the References for lots more details about this. But what’s less well-known is that there are (at least!) two other places in mathematics where the square root of π crops up: an infinite product that on its surface makes no sense, and a calculus problem that you can use a surface to solve.
Step-by-step explanation: this is the same paragraph The square root of π has attracted attention for almost as long as π itself. When you’re an ancient Greek mathematician studying circles and squares and playing with straightedges and compasses, it’s natural to try to find a circle and a square that have the same area. If you start with the circle and try to find the square, that’s called squaring the circle. If your circle has radius r=1, then its area is πr2 = π, so a square with side-length s has the same area as your circle if s2 = π, that is, if s = sqrt(π). It’s well-known that squaring the circle is impossible in the sense that, if you use the classic Greek tools in the classic Greek manner, you can’t construct a square whose side-length is sqrt(π) (even though you can approximate it as closely as you like); see David Richeson’s new book listed in the References for lots more details about this. But what’s less well-known is that there are (at least!) two other places in mathematics where the square root of π crops up: an infinite product that on its surface makes no sense, and a calculus problem that you can use a surface to solve.
Answer: The slope of the line would be 1.25!
Step-by-step explanation: I'll provide a screenshot of the graph I have made in a second! (:
Answer:
4f + 6g -5
Step-by-step explanation:
4f - 3 +2g- - 4g + 2
4f - 3+ 2g + 4g - 2
4f -3-2 +2g +4g
4f -5 + 6g
4f + 6g -5