Answer:
<u>x = (3√34 + 1)/5 units</u>
Step-by-step explanation:
Let's solve for x, using the Pythagorean theorem, this way:
BC is the Hypotenuse of the triangle ABC
BC² = 15² + 9²
BC² = 225 + 81
BC² = 306
BC = √9 * 34
BC = 3 √34
Now, we can substitute and solve for x, this way:
BC = 3x + 2x - 1
3 √34 = 3x + 2x - 1
3√ 34 + 1 = 5x
<u>x = (3√34 + 1)/5 units</u>
Answer:
53%
Step-by-step explanation:
says it in the question lol
Given that <span>∆abc is isosceles and ab = bc, then m<bac = m<acb and m<hbc = 180 - m<bac - m<acb
Given that </span><span>m∠hbc = m∠bac +m∠bch, then m<hbc + m<bch = m<bac + 2m<bch
But m<hbc + m<bch = 90°, thus 90° = m<bac + 2m<bch
</span><span>Also, m∠bac + m∠ach = 90° ⇒ m<bac + 2m<bch = m<bac + m<ach ⇒ 2m<bch = m<ach
Since, Δabc is isosceles with ab = bc ⇒ m<bac = m<acb.
Also, m<acb = m<ach + m<bch ⇒ m<acb = 3m<bch = m<bac
</span><span><span>Since m<bch : m<ach = 1 : 2 ⇒ bh : ah = 1 : 2
Thus,

Given that ch = 84 cm, then

Now,


</span> </span>
For this case we have the following complex number:
1 + i
Its equivalent pair is given by:
root (2) * (cos (pi / 4) + i * sin (pi / 4))
Rewriting we have:
root (2) * (root (2) / 2 + i * (root (2) / 2))
(2/2 + i * (2/2))
(1 + i)
Answer:
option A represents a pair with the same complex number