Ooh, fun
what I would do is to make it a piecewise function where the absolute value becomse 0
because if you graphed y=x^2+x-12, some part of the garph would be under the line
with y=|x^2+x-12|, that part under the line is flipped up
so we need to find that flipping point which is at y=0
solve x^2+x-12=0
(x-3)(x+4)=0
at x=-4 and x=3 are the flipping points
we have 2 functions, the regular and flipped one
the regular, we will call f(x), it is f(x)=x^2+x-12
the flipped one, we call g(x), it is g(x)=-(x^2+x-12) or -x^2-x+12
so we do the integeral of f(x) from x=5 to x=-4, plus the integral of g(x) from x=-4 to x=3, plus the integral of f(x) from x=3 to x=5
A.

B.
sepearte the integrals
![\int\limits^{-5}_{-4} {x^2+x-12} \, dx = [\frac{x^3}{3}+\frac{x^2}{2}-12x]^{-5}_{-4}=(\frac{-125}{3}+\frac{25}{2}+60)-(\frac{64}{3}+8+48)=\frac{23}{6}](https://tex.z-dn.net/?f=%20%5Cint%5Climits%5E%7B-5%7D_%7B-4%7D%20%7Bx%5E2%2Bx-12%7D%20%5C%2C%20dx%20%3D%20%5B%5Cfrac%7Bx%5E3%7D%7B3%7D%2B%5Cfrac%7Bx%5E2%7D%7B2%7D-12x%5D%5E%7B-5%7D_%7B-4%7D%3D%28%5Cfrac%7B-125%7D%7B3%7D%2B%5Cfrac%7B25%7D%7B2%7D%2B60%29-%28%5Cfrac%7B64%7D%7B3%7D%2B8%2B48%29%3D%5Cfrac%7B23%7D%7B6%7D)
next one
![\int\limits^{-4}_3 {-x^2-x+12} \, dx=-1[\frac{x^3}{3}+\frac{x^2}{2}-12x]^{-4}_{3}=-1((-64/3)+8+48)-(9+(9/2)-36))=\frac{343}{6}](https://tex.z-dn.net/?f=%20%5Cint%5Climits%5E%7B-4%7D_3%20%7B-x%5E2-x%2B12%7D%20%5C%2C%20dx%3D-1%5B%5Cfrac%7Bx%5E3%7D%7B3%7D%2B%5Cfrac%7Bx%5E2%7D%7B2%7D-12x%5D%5E%7B-4%7D_%7B3%7D%3D-1%28%28-64%2F3%29%2B8%2B48%29-%289%2B%289%2F2%29-36%29%29%3D%5Cfrac%7B343%7D%7B6%7D)
the last one you can do yourself, it is

the sum is

so the area under the curve is
Answer:
Original position: base is 1.5 meters away from the wall and the vertical distance from the top end to the ground let it be y and length of the ladder be L.
Step-by-step explanation:
By pythagorean theorem, L^2=y^2+(1.5)^2=y^2+2.25 Eq1.
Final position: base is 2 meters away, and the vertical distance from top end to the ground is y - 0.25 because it falls down the wall 0.25 meters and length of the ladder is also L.
By pythagorean theorem, L^2=(y -0.25)^2+(2)^2=y^2–0.5y+ 0.0625+4=y^2–0.5y+4.0625 Eq 2.
Equating both Eq 1 and Eq 2: y^2+2.25=y^2–0.5y+4.0625
y^2-y^2+0.5y+2.25–4.0625=0
0.5y- 1.8125=0
0.5y=1.8125
y=1.8125/0.5= 3.625
Using Eq 1: L^2=(3.625)^2+2.25=15.390625, L=(15.390625)^1/2= 3.92 meters length of ladder
Using Eq 2: L^2=(3.625)^2–0.5(3.625)+4.0625
L^2=13.140625–0.90625+4.0615=15.390625
L= (15.390625)^1/2= 3.92 meters length of ladder
<em>hope it helps...</em>
<em>correct me if I'm wrong...</em>
Answer: 7
Step-by-step explanation:
Here the given inequality that shows the number of humming birds(H) and the number of sunbirds(S) that must pollinate the colony so it can survive until next year,
6 H + 4 S > 74
If This year, 8 hummingbirds pollinated the colony.
By putting H=8 in the above inequality,
We get,
6× 8 + 4 S > 74
⇒ 48 + 4 S > 74
⇒ 4 S > 26
⇒ S > 6.5
Hence the least number of sunbirds is 7.
The variance of a distribution is the square of the standard deviation
The variance of the data is 2.2
<h3>How to calculate the variance</h3>
Start by calculating the expected value using:

So, we have:

This gives

Next, calculate E(x^2) using:

So, we have:


The variance is then calculated as:

So, we have:


Approximate

Hence, the variance of the data is 2.2
Read more about variance at:
brainly.com/question/15858152