Answer:
Step-by-step explanation:
Calculate the volume of a cone by its base and height with the equation volume = 1/3 * base * height. You can calculate the height of a cone from its volume by reversing this equation. Triple the volume amount. For this example, the volume is 100.
Answer: The second option, y = 3(1/3)^x
Step-by-step explanation: Input each equation into a graphing calculator (preferably GeoGebra online) and check the answer. I linked the equation, but make sure to check anyway just in case :)
the answer to this is
the two is for the top of the five 2
-3(x - 5) +23
What is the midline equation of the function g(x)=3\sin(2x-1)+4g(x)=3sin(2x−1)+4g, (, x, ), equals, 3, sine, (, 2, x, minus, 1,
Aleksandr-060686 [28]
Answer:
Required equation of midline is x=4.
Step-by-step explanation:
Given function is,

In standerd form (1) can be written as,

where,
|a|= amplitude.
b= vertical shift.
c= horizontal shift.
Midline is the line which runs between maximum and minimum value.
In this problem,
a=3, b=2, c=-1, d=4
So amplitude a=3 and graph is shifted 4 units in positive y-axis.
Therefore,
Maximum value = d + a = 4 + 3 = 7
Minumum value = d - a = 4 - 3 = 1
Midline will be centered of the region (7, 1) that is at 4.
Hence equation of midline is x=4.
Answer:
<h2><em><u>x</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>-</u></em><em><u>4</u></em></h2>
Step-by-step explanation:
<h3>
<u>Given</u><u> </u><u>Equation</u><u>:</u></h3>
<h3>
<u>Question</u><u>:</u></h3>
- Whether x has one solution or infinite solutions or no solutions?
<h3>
<u>Solution</u><u>:</u></h3>
=> 3x + 9 = 2x + 5
- <em>(</em><em>On</em><em> </em><em>shifting</em><em> </em><em>like</em><em> </em><em>terms</em><em> </em><em>to</em><em> </em><em>one</em><em> </em><em>side</em><em> </em><em>we</em><em> </em><em>get</em><em>)</em>
=> 3x - 2x = 5 - 9
- <em>(</em><em>On</em><em> </em><em>subtracting</em><em>)</em>
=> x = - 4
<h3>
<u>Result</u><u>:</u></h3>
<em><u>Hence</u></em><em><u>,</u></em><em><u> </u></em><em><u>x</u></em><em><u> </u></em><em><u>has</u></em><em><u> </u></em><em><u>only</u></em><em><u> </u></em><em><u>one</u></em><em><u> </u></em><em><u>solution</u></em><em><u> </u></em><em><u>that</u></em><em><u> </u></em><em><u>is</u></em><em><u>,</u></em><em><u> </u></em><em><u>x</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>-</u></em><em><u>4</u></em><em><u> </u></em><em><u>(</u></em><em><u>Ans</u></em><em><u>)</u></em>