The average atomic mass of an element can be determined by multiplying the individual masses of the isotopes with their respective relative abundances, and adding them.
Average atomic mass of Br = 158 amu(0.2569) + 160 amu(0.4999) + 162 amu(0.2431)
Average atomic mass = 159.96 amu
As described in the problem, the relative abundance for Br-79 is 25.69%. This is because 2 atoms of Br is equal to 79*2 = 158 amu. Similarly, the relative abundance of Br-81 is 81*2 = 162, which is 24.31%.
<span>the pH of a 0.050 M triethylamine, is 11.70
</span>
For triehtylamine,

, the reaction will be

and we know, pH = -log[H+] and pOH = -log[OH-]
Also, pOH + pH = 14
Now, the Kb value = 5.3 x 10^-4
And
![kb = \frac{( [( C_{2}H_{5})_{3}NH^{+} ]* OH^{-} )}{[( C_{2}H_{5})_{3}N]}](https://tex.z-dn.net/?f=kb%20%3D%20%20%5Cfrac%7B%28%20%5B%28%20C_%7B2%7DH_%7B5%7D%29_%7B3%7DNH%5E%7B%2B%7D%20%5D%2A%20%20OH%5E%7B-%7D%20%29%7D%7B%5B%28%20C_%7B2%7DH_%7B5%7D%29_%7B3%7DN%5D%7D%20)
thus, [OH-] =(5.3 ^ 10-4) ^2 / 0.050
=0.00516 M
Thus, pOH = 2.30
pH = 14 - pOH = 11.7
Answer:
at the beginning:
pH = 0.745
Explanation:
HCl is a strong acid, so:
0.18 M 0.18 0.18.....equilibrium
before base is added:
∴ [ H3O+ ] ≅ <em>C </em>HCl = 0.18 M
⇒ pH = - Log [ H3O+ ] = - Log ( 0.18 )
⇒ pH = 0.745
Answer:
0.83 mL
Explanation:
Given data
- Initial concentration (C₁): 12 M
- Final concentration (C₂): 1.0 M
- Final volume (V₂): 10.0 mL
We can calculate the initial volume of HCl using the dilution rule.
C₁ × V₁ = C₂ × V₂
V₁ = C₂ × V₂ / C₁
V₁ = 1.0 M × 10.0 mL / 12 M
V₁ = 0.83 mL
The required volume of the initial solution is 0.83 mL.
Answer:
It is prepared small amounts of hydrogen cloride for uses in the lab.
It can be "generated in an HCl generator by dehydrating hydrochloric acid with either sulfuric acid or anhydrous calcium chloride."