The radioactive decay obeys first order kinetics
the rate law expression for radioactive decay is
![ln\frac{[A_{0}]}{[A_{t}]}=kt](https://tex.z-dn.net/?f=ln%5Cfrac%7B%5BA_%7B0%7D%5D%7D%7B%5BA_%7Bt%7D%5D%7D%3Dkt)
Where
A0 = initial concentration
At = concentration after time "t"
t = time
k = rate constant
For first order reaction the relation between rate constant and half life is:

Let us calculate k
k = 0.693 / 72 = 0.009625 years⁻¹
Given
At = 0.25 A0

time = 144 years
So after 144 years the sample contains 25% parent isotope and 75% daughter isotopes**
Simply two half lives
Answer: protons and neutrons.
The nucleus is made up of 3 subatomic particles that are protons,neutrons and electrons.
General notation of an element is 
where, X is the Element, A is the Atomic Mass and Z is the Atomic Number
If we know the number of protons we can easily find out the atomic number of any element because Atomic Number = Number of protons in an element.
And in addition if we know the number of neutrons we can easily find out the atomic mass of an element because
Atomic Mass = (Number of protons) + (Number of neutrons)
If we get to know the atomic number and atomic mass, we can easily tell what element is it by looking from the periodic table.
<span>Chemically speaking, rust is a base and any acid will remove it. The choice of acid is going to be the thing to consider, since acid + base = salt and water. Phosphoric acid left a residue because the salt Iron phosphate is insoluble in water. Iron's soluble salts include the chloride, the sulfate and the nitrate. Industrially speaking, you need to "pickle" your iron. Pickling is a process in which dilute sulfuric acid is used to remove any surface corrosion prior to either painting or plating an iron surface. Sulfuric acid is ordinary battery acid and the salt Iron sulfate is not toxic. Sulfuric acid is one of the most common acids used (besides hydrochloric acid). The dilute kind is not terribly corrosive but concentrated sulfuric acid is a thick, syrupy liquid which can cause some nasty chemical burns if allowed to remain on the skin. It also heats up quite a lot when water is added, so this is an "Acid to water not water to acid" situation. The other choice is Hydrochloric acid, known as muriatic acid. The 20% concentrate is available in nearly any hardware store. It isn't as corrosive as concentrated sulfuric acid, but it has a burning, acrid stench, so never use the concentrate without adequate ventilation. It is ordinarily used to remove hard water deposits (boiler scale) but does a good on on rust as well. Concentrated Iron chloride isn't entirely inert but lots of rinsing will turn it back into harmless rust/sludge, especially if the rince water is naturally hard. Nitric acid will remove corrosion from anything, but it is extremely corrosive, smells worse then Hydrochloric acid and isn't easy to get, since it can be used to create some powerful explosives</span>