Answer:
two north poles and two south poles
Explanation:
A single magnet has a north pole and a south pole. If it is broken into two pieces, then each of the two pieces will have a north pole and a south pole.
No matter how many times or into how many pieces a magnet is broken, the resulting pieces will have two poles each.
Answer:
Reduction
Explanation:
The oxidation reduction reactions are called redox reaction. These reactions are take place by gaining or losing the electrons and oxidation state of elements are changed.
Oxidation:
Oxidation involve the removal of electrons and oxidation state of atom of an element is increased.
Reduction:
Reduction involve the gain of electron and oxidation number is decreased.
In given reaction fluorine gas gain two electron and form fluoride ions.
F₂(g) + 2e⁻ → 2F⁻(aq)
The given reaction is reduction because oxidation state is decreased from zero to -1.
Answer:
The mass of ice required to melt to lower the temperature of 353 mL of water from 26 ⁰C to 6 ⁰C is 85.4197 kg
Explanation:
Heat gain by ice = Heat lost by water
Thus,
Heat of fusion + 
Where, negative sign signifies heat loss
Or,
Heat of fusion + 
Heat of fusion = 334 J/g
Heat of fusion of ice with mass x = 334x J/g
For ice:
Mass = x g
Initial temperature = 0 °C
Final temperature = 6 °C
Specific heat of ice = 1.996 J/g°C
For water:
Volume = 353 mL
Density of water = 1.0 g/mL
So, mass of water = 353 g
Initial temperature = 26 °C
Final temperature = 6 °C
Specific heat of water = 4.186 J/g°C
So,


345.976x = 29553.16
x = 85.4197 kg
Thus,
<u>The mass of ice required to melt to lower the temperature of 353 mL of water from 26 ⁰C to 6 ⁰C is 85.4197 kg</u>
Answer:- 1467 K
Solution:- It asks to calculate the kelvin temperature of the light bulb. Looking at the given info, it is based on ideal gas law equation, PV=nRT.
Given: 
V = 75.0 mL = 0.0750 L
P = 116.8 kPa
We know that, 101.325 kPa = 1 atm
So, 
= 1.15 atm
R is universal gas constant and it's value is
.
T = ?
Let's plug in the values in the equation and solve it for T.

0.08625 = 0.00005878(T)

T = 1467 K
So, the temperature of the light bulb would be 1467 K.
That would be 'ionises' .