a = 4 first term, r = ?, T10 = 100.
Tn = ar^n - 1 formula for g.p
T10 = 4r^ 10 - 1
100 = 4r^9
Divide both side by 4
100/4 = 4/4r^9
25 = r^9 take the 9th root of both side
9√25 = 9√r^9
r = 9√25
To find the nth term
Since Tn = ar^n - 1
Answer:
0.95988 (Accuracy of the test )
Step-by-step explanation:
To determine the accuracy of this test we have to list out the given values
Prevalence rate of the disease = 0.3% = 0.003
sensitivity rate of the disease = 92% = 0.92
specificity rate for the test = 96% = 0.96
The accuracy of the test can be found using this equation
Accuracy = sensitivity * prevalence + specificity ( 1 - prevalence )
= 0.92 * 0.003 + 0.96 ( 1 - 0.003 )
= 0.00276 + 0.95712
= 0.95988
Answer:
what do you need here there has to be something to do here your just giving me a variable
Step-by-step explanation:
<span>x^2 + 15x + 56.25 = 105.25
"Completing the square" is one of many different techniques for solving a quadratic equation. What you do is add a constant to both sides of the equation such that the lefthand side can be factored into the form a(x+d)^2. For instance, squaring (X+D) = X^2 + 2DX + D^2. Notice the 2DX term. That is the same term as the 15x term in the problem. So 2D = 15, D = 7.5. And D^2 = 7.5^2 = 56.25.
So we have
x^2 + 15x + 56.25 = 49 + 56.25
Which is
x^2 + 15x + 56.25 = 105.25
Which is the answer desired.
Now the rest of this is going beyond the answer. Namely, it's answering the question "Why does complementing the square help?"
Well, we know that the left hand side of the equation can now be written as
(x+7.5)^2 = 105.25
Now take the square root of each side
(x+7.5) = sqrt(105.25)
And let's use both the positive and negative square roots.
So
x+7.5 = 10.25914226
and
x+7.5 = -10.25914226
And let's find X.
x+7.5 = 10.25914226
x = 2.759142264
x+7.5 = -10.25914226
x = -17.75914226
So the roots for x^2 + 15x - 49 is 2.759142264, and -17.75914226</span>