Answer:
The value of the Golden Igloo is $227.4 million.
Explanation:
First, we need to find the inner and the outer volume of the half-spherical shell:


The total volume is given by:

Where:
: is the inner volume
: is the inner radius = 1.25/2 = 0.625 m
: is the outer volume
: is the outer radius = 1.45/2 = 0.725 m
Then, the total volume of the Igloo is:
![V_{T} = \frac{2}{3}\pi r_{o}^{3} - \frac{2}{3}\pi r_{i}^{3} = \frac{2}{3}\pi [(0.725 m)^{3} - (0.625 m)^{3}] = 0.29 m^{3}](https://tex.z-dn.net/?f=%20V_%7BT%7D%20%3D%20%5Cfrac%7B2%7D%7B3%7D%5Cpi%20r_%7Bo%7D%5E%7B3%7D%20-%20%5Cfrac%7B2%7D%7B3%7D%5Cpi%20r_%7Bi%7D%5E%7B3%7D%20%3D%20%5Cfrac%7B2%7D%7B3%7D%5Cpi%20%5B%280.725%20m%29%5E%7B3%7D%20-%20%280.625%20m%29%5E%7B3%7D%5D%20%3D%200.29%20m%5E%7B3%7D%20)
Now, by using the density we can find the mass of the Igloo:

Finally, the value (V) of the antiquity is:
Therefore, the value of the Golden Igloo is $227.4 million.
I hope it helps you!
Answer:
3000 kJ/kg
Explanation:
The calorific value of a substance is the amount of heat produced per unit mass by the combustion of the substance.
It is given by:

where
Q is the amount of heat released
m is the mass of the fuel
In this problem, we have:
m = 60 kg is the mass of fuel
is the amount of heat released
Therefore, the calorific value of the fuel is:

Matematically speaking, maybe because:
The number of substances = number of elements + number of different combinations of those elements
Answer:
See explanation
Explanation:
The boiling point of a substance is affected by the nature of bonding in the molecule as well as the nature of intermolecular forces between molecules of the substance.
2-methylpropane has only pure covalent and nonpolar C-C and C-H bonds. As a result of this, the molecule is nonpolar and the only intermolecular forces present are weak dispersion forces. Therefore, 2-methylpropane has a very low boiling point.
As for 2-iodo-2-methylpropane, there is a polar C-I bond. This now implies that the intermolecular forces present are both dispersion forces and dipole interaction. As a result of the presence of stronger dipole interaction between 2-iodo-2-methylpropane molecules, the compound has a higher boiling point than 2-methylpropane.