Ur average speed increases bc ur moving faster
Answer:
can't be done
Explanation:
protons and electrons always are the same number,and the neutrons are found by subtracting the atomic mass and protons/electrons soooooooo it can't have 15 protons, 18 electrons, and 18 neutrons.......i hope this helped if not please tell me.
The atoms that would be expected to be diamagnetic in the ground state is magnesium
The magnetism of an atom refers to its electronic configuration. A diamagnetic atom is an atom whose electrons are all paired.
A paired electron is an electron that occurs in pairs in its orbital shell.
At their respective ground state, the electronic configuration of the given elements are as follows:
The electronic configuration of magnesium is 1s²2s²2p⁶3s². As such its a diamagnetic atom.
The electronic configuration of Potassium is 1s²2s²2p⁶3s²3p⁶4s¹. Hence, Potassium has one unpaired electron in its outermost shell.
The electronic configuration of Chlorine is 1s²2s²2p⁶3s²3p⁵. Hence, Chlorine has one unpaired electron in its outermost shell.
The electronic configuration of Cobalt is 1s²2s²2p⁶3s²3p⁶3d⁷4s². Hence, the unpaired electrons of Cobalt in its outermost shell are three.
Therefore, the atoms that are diamagnetic in the ground state is magnesium.
Learn more about diamagnetic atoms here:
brainly.com/question/18865305?referrer=searchResults
Answer:
The correct answer is option 3. Run a test reaction of crude oil with ocean water over time with Oil Spill Eater present
Explanation:
In any laboratory experiment, all the apparatus needed to carry out a particular experiment must be provided. In this case, our apparatus will be crude oil with ocean water and oil spill eater which is the enzyme used.
We can then run a test reaction of crude oil with ocean water over time with Oil Spill Eater present.
Answer:
8.9 g / cm^3
Explanation:
Density = mass / volume
We are given volume which is 10.0cm^3 (cm^3 is just fancy way of saying ml), and mass of 89 gram. Just plug them in respective spots.
Density = 89 / 10.0 = 8.9 g / cm^3