The answer is 4.04605 X 10^-25
Answer:
Mass of HCl = 73 g
Explanation:
Given data:
Mass of hydrogen = 2 g
Mass of HCl = ?
Solution:
First of all we will write the balance chemical equation:
H₂ + Cl₂ → 2HCl
Number of moles of hydrogen = 2 g/ 2g/mol
Number of moles of hydrogen = 1 mol
Form balanced chemical equation compare the moles hydrogen with HCl.
H₂ : HCl
1 : 2
Mass of HCl:
Mass of HCl = number of moles × molar mass
Mass of HCl = 2 mol × 36.5 g/mol
Mass of HCl = 73 g
Answer:
FALSE
Explanation:
Assuming that the gas is ideal
Therefore the gas obeys the ideal gas equation
<h3>Ideal gas equation is </h3><h3>P × V = n × R × T</h3>
where
P is the pressure exerted by the gas
V is the volume occupied by the gas
n is the number of moles of the gas
R is the ideal gas constant
T is the temperature of the gas
Here volume of the gas will be the volume of the container
Given the volume of the container and number of moles of the gas are constant
As R will also be constant, the pressure of the gas will be directly proportional to the temperature of the gas
P ∝ T
∴ Pressure will be directly proportional to the temperature
The theoretical yield of Li3N is 20.9 g .
Answer:
V = 210.5 mL
Explanation:
∴ C1 = 0.95
∴ C2 = 0.40
∴ V2 = 0.500 L
⇒ V1 = ((0.50)(0.40))/(0.95)
⇒ V1 = 0.2105 L