In titration, the moles of acid equal moles of base. You were given that 22.75ml of 0.215M NaOH is used, so calculate the number of moles of that base the experiment used in total. After that because you know mol base = mol acid, whatever amount of base you use must be the total amount of acid present in the solution. You were given the volume of the acid, and you have just found the total mols of acid. Using these two information, solve for the concentration. And one more thing, even though I'm pretty sure it won't affect your answer, you should always convert things to the proper units. Since the concentration we're talking about in this problem is molarity, which has the unit mol/L, you should always have all of your numbers in these units. It just make it simpler and will not confuse you
Answer:
Hope this helped :) good luck! ❤️
Explanation:
A <em>coolant solution</em> is a <u><em>homogeneous </em></u>mixture because the coolant particles are not chemically combined with the water (keep their properties) and they are evenly distributed throughout the water.
Answer:
3= Lithium (Li) = [He] 2s1
6= Carbon (C) = [He] 2s2 2p2
8=Oxygen (O)= [He] 2s2 2p4
13=Aluminium (Al)= [Ne] 3s2 3p1
U 2 can help me by marking as brainliest.........
<h3><u>Answer;</u></h3>
Dipole-dipole and hydrogen bonding
<h3><u>Explanation;</u></h3>
- <em><u>A solution of water and ethanol contains the dipole-dipole forces and hydrogen bonds as the intermolecular forces between molecules.</u></em>
- <em><u>Hydrogen bonding is a type of interactions between molecules that occurs when a partially negative atom such as oxygen end of one of the molecules is attracted to a partially positive hydrogen end of another molecule.</u></em>
- <em><u>Dipole-dipole forces</u></em> results from the unsymmetrical distribution of electrons, thus the polarity does not balance, thus resulting to a dipole attraction between molecules.
It broke up in the Mesozoic era.