So,
GPE (graviational potential energy) = mass x g x height
GPE is depends on where zero height is defined. In this situation, we define h = 0 as the initial height.



The builder has gained 18.375 kJ of PE.
Answer:
Normal stress = 66/62.84 = 1.05kips/in²
shearing stress = T/2 = 0.952/2 = 0.476 kips/in²
Explanation:
A steel pipe of 12-in. outer diameter d₂ =12in d₁= 12 -4in = 8in
4 -in.-thick
angle of 25°
Axial force P = 66 kip axial force
determine the normal and shearing stresses
Normal stress б = force/area = P/A
= 66/ (П* (d₂²-d₁²)/4
=66/ (3.142* (12²-8²)/4
= 66/62.84 = 1.05kips/in²
Tangential stress T = force* cos ∅/area = P/A
= 66* cos 25/ (П* (d₂²-d₁²)/4
=59.82/ (3.142* (12²-8²)/4
= 59.82/62.84 = 0.952kips/in²
shearing stress = tangential stress /2
= T/2 = 0.952/2 = 0.476 kips/in²
Answer:
t=40s,
Explanation:
If you can swim in still water at 0.5m/s, the shortest time it would take you to swim from bank to bank across a 20m wide river, if the water flows downstream at a rate of 1.5m/s, is most nearly:
from the question the swimmer will have a velocity which is equal to the sum of the speed of the water and the velocity to swi across the bank
Vt=v1+v2
the time is takes to swim across the bank will be
DY=Dv*t
DY=distance across the bank
Dv=ther velocity of the swimmer across the bank
t=20/ 0.5m/s,
t=40s, time it takes to swim across the bank
velocity is the rate of displacement
displacement is distance covered in a specific direction