So if the formula for work is force times displacement times cosine(theta), you'd plug in the numbers
100x5 (since there's no angle in the problem, cosine(theta) isn't used
100x5 = 500
So the answer would be B.
Hope that helps!
Answer:
v = 54m/s
Explanation:

a = 7m/s²
u = 12m/s
t = 6s
7 = (v-12)/6
v - 12 = 42
v = 54m/s
(Correct me if i am wrong)
Answer:magnitude -5; angle 160°
Explanation:
Vector A is described as having magnitude 5 and angle -20°.
To get an equivalent vector, we either leave the magnitude at 5 and add 360° to the angle, or we reverse the magnitude to -5 and add 180° to the angle.
5 @ -20° = 5 @ 340°
5 @ -20° = -5 @ 160°
The third one is the answer.
Answer:

Explanation:
The net force exerted on the mass is the sum of tension force and the external force of gravity.

is the tension force.
is the force of gravity.

where
is the rope's radius from the fixed point.
From the net force equation above:

Hence the tension force is 6.046N
Answer:
Approximately
.
Assumption: the ball dropped with no initial velocity, and that the air resistance on this ball is negligible.
Explanation:
Assume the air resistance on the ball is negligible. Because of gravity, the ball should accelerate downwards at a constant
near the surface of the earth.
For an object that is accelerating constantly,
,
where
is the initial velocity of the object,
is the final velocity of the object.
is its acceleration, and
is its displacement.
In this case,
is the same as the change in the ball's height:
. By assumption, this ball was dropped with no initial velocity. As a result,
. Since the ball is accelerating due to gravity,
.
.
In this case,
would be the velocity of the ball just before it hits the ground. Solve for
.
.