Answer:
1. The current will drop to half of its original value.
Explanation:
The problem can be solved by using Ohm's law:

where
V is the voltage across the circuit
R is the resistance of the circuit
I is the current
We can rewrite it as

In this problem, we have:
- the resistance of the circuit remains the same: R' = R
- the voltage is decreased to half of its original value: 
So, the new current will be

so, the current will drop to half of its original value.
Answer:

Explanation:
The magnitude of the net force exerted on q is known, we have the values and positions for
and q. So, making use of coulomb's law, we can calculate the magnitude of the force exerted by
on q. Then we can know the magnitude of the force exerted by
about q, finally this will allow us to know the magnitude of 
exerts a force on q in +y direction, and
exerts a force on q in -y direction.

The net force on q is:

Rewriting for
:

The vector perpendicular to the plane of A = 3i+ 6j - 2k and B = 4i-j +3k is 16 i - 17 j - 27 k
Let r be the vector perpendicular to A and B,
r = A * B
A = 3i + 6j - 2k
B = 4i - j + 3k
a1 = 3
a2 = 6
a3 = - 2
b1 = 4
b2 = - 1
b3 = 3
a * b = ( a2 b3 - b2 a3 ) i + ( a3 b1 - b3 a1 ) j + ( a1 b2 - b1 a2 ) k
a * b = [ ( 6 * 3 ) - ( - 1 * - 2 ) ] i + [ ( - 2 * 4 ) - ( 3 * 3 ) ] j + [ ( 3 * - 1 ) - ( 4 * 6 ) ] k
a * b = 16 i - 17 j - 27 k
The perpendicular vector, r = 16 i - 17 j - 27 k
Therefore, the vector perpendicular to the plane of A = 3i + 6j - 2k and B = 4i - j + 3k is 16 i - 17 j - 27 k
To know more about perpendicular vectors
brainly.com/question/14384780
#SPJ1
Answer:
a) x = 0.200 m
b)E = 3.84*10^{-4} N/C
Explanation:


DISTANCE BETWEEN BOTH POINT CHARGE = 0.5 m
by relation for electric field we have following relation

according to question E = 0
FROM FIGURE
x is the distance from left point charge where electric field is zero

solving for x we get

x = 0.200 m
b)electric field at half way mean x =0.25

E = 3.84*10^{-4} N/C
Answer:
True I hope you like it
Give me a brainliest answer