we know that
The probability that "at least one" is the probability of exactly one, exactly 2, exactly 3, 4 and 5 contain salmonella.
The easiest way to solve this is to recognise that "at least one" is ALL 100% of the possibilities EXCEPT that none have salmonella.
If the probability that any one egg has 1/6 chance of salmonella
then
the probability that any one egg will not have salmonella = 5/6.
Therefore
for all 5 to not have salmonella
= (5/6)^5 = 3125 / 7776
= 0.401877 = 0.40 to 2 decimal places
REMEMBER this is the probability that NONE have salmonella
Therefore
the probability that at least one does = 1 - 0.40
= 0.60
the answer is
0.60 or 60%
Answer:
53.04
Step-by-step explanation:
Given data
<span>sin (x+pi/2)=cos x
</span>now using sin law
sin(a+b)=sin(a)cos(b)+cos(a)sin(b)
now using above values
sin(pi/2+x)=sin(pi/2)cos(x)+cos(pi/2)sin(x)
as we know that
sin(pi/2)=1
cos(pi/2)=0
now putting these values
sin(pi/2+x)=1*cosx+0*1
sin(pi/2+x)=cosx
hence proved that
<span>sin (x+pi/2)=cos x</span>
20:20 since the number of boy is even to the girls