For every meter, the equivalent measurements is 1000 millimeters. Hence in the problem where the number of millimeters is given, we divide the number by 1000 to get the number of meters. The answer here is 0.01123 m.
Answer:
Explanation:
The given reaction equation is:
2A + 4B → C + 3D
We know the mass of compound A in the reaction above. We are to find the mass of compound D.
We simply work from the known mass to calculate the mass of the unkown compound D
Using the mole concept, we can find the unknown mass.
Procedures
- We first find the molar mass of the compound A from the atomic units of the constituent elements.
- We then use the molar mass of A to calculate its number of moles using the expression below:
Number of moles of A = 
- Using the known number of moles of A, we can work out the number of moles of D.
From the balanced equation of the reaction, it is shown that:
2 moles of compound A was used up to produced 3 moles of D
Then
x number of moles of A would give the number of moles of D
- Now that we know the number of moles of D, we can find its mass using the expression below:
Mass of D = number of moles of D x molar mass of D
Answer:
5 moles of electrons
Explanation:
The balance equation is as follow,
<span> 5 Ag</span>⁺ + Mn⁺²<span> + 4 H</span>₂O →<span> 5 Ag + MnO</span>₄⁻<span> + 8 H</span>⁺
Reduction of Ag:
Ag⁺ + 1 e⁻ → Ag
Or,
5 Ag⁺ + 5 e⁻ → 5 Ag
Oxidation of Mn:
Mn⁺² → MnO₄⁻ + 5 e⁻
Result:
Hence 5 moles of Ag⁺ accepts 5 electrons from 1 mole of Mn⁺².