Answer:
Repeated SN2 reactions occur leading to the formation of a racemic mixture
Explanation:
S-2-iodooctane is a chiral alkyl halide with an asymmetric carbon atom. The presence of an asymmetric carbon atom implies that it can rotate plane polarized light and thus lead to optical isomerism. The two configurations of the compound are R/S according to the Cahn-Prelong-Ingold system.
However, when S-2-iodooctane is treated with sodium iodide in acetone, repeated SN2 reactions occur since the iodide ion is both a good nucleophile and a good leaving group. Hence a racemic modification is formed in the system with time hence we end up with (±)- Iodooctane.
From the periodic table:
molecular mass of carbon = 12 grams
molecular mass of fluorine = 18.99 grams
molecular mass of chlorine = 35.5 grams
Therefore:
one mole of CF2Cl2 = 12 + 2(18.99) + 2(35.5) = 120.98 grams
Therefore, we can use cross multiplication to find the number of moles in 79.34 grams as follows:
mass = (79.34 x 1) / 120.98 = 0.6558 moles
Now, one mole contains 6.022 x 10^23 molecules, therefore:
number of molecules in 0.65548 moles = 0.6558 x 6.022 x 10^23
= 3.949 x 10^23 molecules
We have Kc = 4.2 x 10^-2 (given but missing in the question)
and When the balanced equation for this reaction is:
PCl5(g) ↔ PCl3(g) + Cl2(g)
so, according to the Kc formula:
Kc = the concentration of products / the concentration of the reactants
so, to get the concentration of the reactants in equilibrium, the concentration of the products / the concentration of the reactants should equal the Kc value which is given in the question (missing in your question).
So by substitution in Kc formula:
Kc = [PCl3]*[Cl2] / [PCl5]
4.2 x 10^-2 = 0.18 * 0.25 /[PCl5]
∴[PCl5] = 0.18*0.25 / 4.2x10^-2 = 1.07
So the concentration of the reactants in equilibrim = 1.07
A chemical structure of a molecule includes the arrangement of atoms and the chemical bonds that hold the atoms together. The 2-HEPTANONE molecule contains a total of 21 bond(s) There are 7 non-H bond(s), 1 multiple bond(s), 4 rotatable bond(s), 1 double bond(s) and 1 ketone(s) (aliphatic).