Answer:
(x, y, z) = (1, -1, -4)
Step-by-step explanation:
A suitable graphing or scientific calculator can find the reduced row-echelon form for you. There are on-line calculators that will do that, too.
_____
In general, if you want to do this by hand, you want to use row operations on the augmented matrix to make the diagonal elements 1 and the off-diagonal elements 0 as shown in the attached result.
If a[i,j] represents the element at row i, column j, you do that by dividing row i by a[i, i] (to make a[i, i] = 1), then subtracting the product of row i and a[k,i] from row k. (for all rows k ≠ i) For this 3-row matrix, repeat these steps for i = 1 to 3.
In the general case of an n by n+1 augmented matrix, you will be doing n^2 row operations, each one involving evaluation of n+1 expressions. The work rapidly grows with matrix size, so readily justifies use of a calculator.
As with many "elimination" problems, appropriate choice of sequence can reduce the work. The above algorithm always produces the reduced row-echelon form, but may result in messy arithmetic along the way.
Answer:
1/9 pint
or 2/9 cup
Step-by-step explanation:
This question is asking us to <em>divide </em>2/3 pint among 6 cans.
2/3 ÷ 6
2/3 × 1/6
= 2/18
= 1/9 pint or 2/9 cup additive
Answer:
A
Step-by-step explanation:
Answer:

Step-by-step explanation:
<h2>
<em><u>THE</u></em><em><u> </u></em><em><u>RÅDIÜS</u></em><em><u> </u></em><em><u>ØF</u></em><em><u> </u></em><em><u>THE</u></em><em><u> </u></em><em><u>CYLI</u></em><em><u>NDER</u></em><em><u> IS</u></em></h2><h2>
<em><u>
</u></em></h2>
<em><u>THE</u></em><em><u> </u></em><em><u>HEI</u></em><em><u>GHT</u></em><em><u> OF</u></em><em><u> </u></em><em><u>CYLI</u></em><em><u>NDER</u></em><em><u> IS</u></em><em><u> </u></em><em><u>4</u></em><em><u>X</u></em><em><u> </u></em><em><u>UNITS</u></em><em><u> </u></em><em><u>.</u></em>
<em><u>☞</u></em><em><u>ÙR</u></em><em><u> ÃÑSWER</u></em><em><u> </u></em><em><u>HØPE</u></em><em><u> IT</u></em><em><u> HELPS</u></em><em><u> YOU</u></em><em><u> ✌️</u></em>