Answer:
true
Step-by-step explanation:
i go to k12 i did this test
Answer:
There is some mistake in the question, because the solutions are x = -1.445 and x = -34.555
Step-by-step explanation:
Given the functions:
f(x) = x² + 4x + 10
g(x) = -32x - 40
we want to find the points at which f(x) = g(x).
x² + 4x + 10 = -32x - 40
x² + 4x + 10 + 32x + 40 = 0
x² + 36x + 50 = 0
Using quadratic formula:







Answer: 18
Step-by-step explanation:
this is because complementary angles add up to 90 degrees so you would just subtract 72 from 90 to get your answer :)
This is a case of exponential growth. The appropriate equation, with the given data inserted, is P(t) = 500 ( 1+0.15)^50
or = 500 (1.15)^50
Evaluate this on your calculator.
Answer:
V(x,y,z) ≈ 61.2 in
Step-by-step explanation:
for the function f
f(X)=x³
then the volume will be
V(x,y,z)= f(X+h) - f(X) , where h= 0.2 (thickness)
doing a Taylor series approximation to f(x+h) from f(x)
f(X+h) - f(X) = ∑fⁿ(X)*(X-h)ⁿ/n!
that can be approximated through the first term and second
f(X+h) - f(X) ≈ f'(x)*(-h)+f''(x)*(-h)²/2 = 3*x²*(-h)+6*x*(-h)²/2
since x=L=10 in (cube)
f(X+h) - f(X) ≈ 3*x²*(-h)+6*x*(-h)²/2 = 3*L²*h+6*L*h²/2 = 3*L*h*(h+L)
then
f(X+h) - f(X) ≈ 3*L*h*(h+L) = 3* 10 in * 0.2 in * ( 0.2 in + 10 in ) = 61.2 in
then
V(x,y,z) ≈ 61.2 in
V real = (10.2 in)³-(10 in)³ = 61 in