<span>The number of dollars collected can be modelled by both a linear model and an exponential model.
To calculate the number of dollars to be calculated on the 6th day based on a linear model, we recall that the formula for the equation of a line is given by (y - y1) / (x - x1) = (y2 - y1) / (x2 - x1), where (x1, y1) = (1, 2) and (x2, y2) = (3, 8)
The equation of the line representing the model = (y - 2) / (x - 1) = (8 - 2) / (3 - 1) = 6 / 2 = 3
y - 2 = 3(x - 1) = 3x - 3
y = 3x - 3 + 2 = 3x - 1
Therefore, the amount of dollars to be collected on the 6th day based on the linear model is given by y = 3(6) - 1 = 18 - 1 = $17
To calculate the number of dollars to be calculated on the 6th day based on an exponential model, we recall that the formula for exponential growth is given by y = ar^(x-1), where y is the number of dollars collected and x represent each collection day and a is the amount collected on the first day = $2.
8 = 2r^(3 - 1) = 2r^2
r^2 = 8/2 = 4
r = sqrt(4) = 2
Therefore, the amount of dollars to be collected on the 6th day based on the exponential model is given by y = 2(2)^(5 - 1) = 2(2)^4 = 2(16) = $32</span>
Answer:
the question is blurry take a picture again
Step-by-step explanation:
Step by step explanation:
R squared= 6inchx6inch=36inchxpie
The formula is circumference x pie
Answer:
113.04 I think. I hope this helped
The answer should be $8 if you are trying to find the unit rate. All you have to do is divide 32 by 4 and you get 8. Hope that helped.
98 days = (98 ⁄ 7) weeks = 14 weeks
<span>Po = initial population = 5 </span>
<span>Ƭ = doubling time in weeks </span>
<span>t = elapsed time in weeks </span>
<span>P{t} = population after "t" weeks </span>
<span> P{t} = (Po)•2^(t ⁄ Ƭ) </span>
<span> P{t} = (Po)•2^(t ⁄ 4) </span>
<span> P{t} = 5•2^(t ⁄ 4) </span>
<span> P{14} = (5)•2^(14 ⁄ 4) … t = 14 weeks = 98 days </span>
<span> P{14} = 56 … population after 14 weeks</span>