Answer:
I believe it is a Nose piece
Explanation:
<h3>
Answer:</h3>
134 atm
<h3>
Explanation:</h3>
- Based on the pressure law, the pressure of a gas varies directly proportionally to the absolute temperature at a constant volume.
- Therefore; we are going to use the equation;

In this case;
Initial pressure, P1 = 144 atm
Initial temperature, T1 (48°C) = 321 K
Final temperature, T2 (25°C) = 298 K
We need to find the final pressure,
Therefore;
P2 = (P1/T1)T2
= (144/321)× 298 K
= 133.68 atm
= 134 atm
Therefore, the new pressure will be 134 atm.
Answer:
ΔH = 2.68kJ/mol
Explanation:
The ΔH of dissolution of a reaction is defined as the heat produced per mole of reaction. We have 3.15 moles of the solid, to find the heat produced we need to use the equation:
q = m*S*ΔT
<em>Where q is heat of reaction in J,</em>
<em>m is the mass of the solution in g,</em>
<em>S is specific heat of the solution = 4.184J/g°C</em>
<em>ΔT is change in temperature = 11.21°C</em>
The mass of the solution is obtained from the volume and the density as follows:
150.0mL * (1.20g/mL) = 180.0g
Replacing:
q = 180.0g*4.184J/g°C*11.21°C
q = 8442J
q = 8.44kJ when 3.15 moles of the solid react.
The ΔH of the reaction is:
8.44kJ/3.15 mol
= 2.68kJ/mol
The equation for calculating a mass is as follows:
m=n×M
Molar mass (M) we can determine from Ar that can read in a periodical table, and a number of moles we can calculate from the available date for N:
n(H2SO4)=N/NA
n(H2SO4)= 1.7×10²³ / 6 × 10²³
n(H2SO4)= 0.3 mole
Now we can calculate a mass of H2SO4:
m(H2SO4) = n×M = 0.3 × 98 = 27.8 g