Answer:
The Mitochondria
Explanation:
Mitochondria are membrane-bound cell organelles that generate most of the energy required to power the cell's organic chemistry reactions. Energy created by the mitochondria is kept in a tiny molecule known as adenosine triphosphate (ATP).
The answer is sodium chloride.
Explanation:
Sodium chloride refers to table salt, and is the most abundant of salts found in seawater.
Answer:
Explanation:
The chemical equation is:
There are several definitions of acid and bases: Arrhenius', Bronsted-Lowry's and Lewis'.
Bronsted-Lowry model defines and <em>acid</em> as a donor of protons, H⁺.
In the given equation HNO₃ is such substance: it releases an donates its hdyrogen to form the H₃O⁺ ion.
On the other hand, a <em>base</em> is a substance that accepts protons.
In the reaction shown, H₂O accepts the proton from HNO₃ to form H₃O⁺.
Thus, H₂O is a base.
In turn, on the reactant sides the substances can be classified as acids or bases.
H₃O⁺ contain an hydrogen that can be donated and form H₂O; thus, it is an acid (the conjugated acid), and NO₃⁻ can accept a proton to form HNO₃; thus it is a base (the conjugated base).
Answer:
2 HC₂H₃O₂(aq) + Sr(OH)₂(aq) ⇒ Sr(C₂H₃O₂)₂(aq) + 2 H₂O
Explanation:
Let's consider the reaction between acetic acid and strontium hydroxide. This is a neutralization reaction, in which an acid reacts with a base to form salt and water. The unbalanced equation is:
HC₂H₃O₂(aq) + Sr(OH)₂(aq) ⇒ Sr(C₂H₃O₂)₂(aq) + H₂O
We have 1 acetate ion to the left and 2 to the right, so we will multiply HC₂H₃O₂(aq) by 2.
2 HC₂H₃O₂(aq) + Sr(OH)₂(aq) ⇒ Sr(C₂H₃O₂)₂(aq) + H₂O
Finally, we multiply water by 2 to get the balanced equation.
2 HC₂H₃O₂(aq) + Sr(OH)₂(aq) ⇒ Sr(C₂H₃O₂)₂(aq) + 2 H₂O
C. Electron. It’s a negatively charged particle that orbits around the nucleus. Usually, there are multiple electrons going around the nucleus in different orbitals (the circle around the nucleus in which the electron travels). The mass is much smaller compared to that of a proton or neutron and can be ignored when calculating the mass of an atom.