Answer:
a) 
b) The should sample at least 293 small claims.
Step-by-step explanation:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:

Now, we have to find z in the Ztable as such z has a pvalue of
.
So it is z with a pvalue of
, so
, which means that the answer of question a is z = 1.645.
Now, find the margin of error M as such

In which
is the standard deviation of the population and n is the size of the sample.
(b) If the group wants their estimate to have a maximum error of $12, how many small claims should they sample?
They should sample at least n small claims, in which n is found when
. So







The should sample at least 293 small claims.
Ok so in order to do that you need a calculator
Answer:
(a) 0.85
(b) 0.7225
Step-by-step explanation:
(a) The point estimate for the proportion of all such components that are not defective is given by the number of non-defective units in the sample divided by the sample size:

The proportion is 0.85.
(b) Assuming that the sample is large enough to accurately provide a point estimate for the whole population, this can be treated as a binomial model with probability of success (non-defective part) p = 0.85. Since both components must be non-defective for the system to work, the probability of two successes in two trials is:

An estimate of 0.7225 for the proportion of all such systems that will function properly.