Answer:
school building, so the fourth side does not need Fencing. As shown below, one of the sides has length J.‘ (in meters}. Side along school building E (a) Find a function that gives the area A (I) of the playground {in square meters) in
terms or'x. 2 24(15): 320; - 2.x (b) What side length I gives the maximum area that the playground can have? Side length x : [1] meters (c) What is the maximum area that the playground can have? Maximum area: I: square meters
Step-by-step explanation:
Answer:
He must work 52 days to pay for a single ticket.
Step-by-step explanation:
This question can be solved using proportions.
Per hour:
Joel earns $7.25 per hour, 20% of which is deducted for taxes. So without taxes, in each hour, he earns 100%-20% of 80% of this, so 0.8*7.25 = $5.8.
Per day:
He works 9 a.m. to 5 p.m. each day, so 8 hours a day.
For each hour, he earns $5.8.
So in a day, he makes 8*5.8 = $46.4
How many days he must work:
The ticket costs $2400.
He makes $46.4 a day.
So, to buy a ticket, he needs to work:
2400/46.4 = 51.7 days
Rounding up
He must work 52 days to pay for a single ticket.
The area of the triangle is 144 m
Answer:
Step-by-step explanation:
My recommendation is try to find a finals for both pre-algebra or algebra after learning some of the material ahead of time and after taking them, find which one is more comfortable for you
Good luck!
Well i have always gone by pemdas which is() exponits mulyiply or divide which ever comes first add subtract which ever comes first also