Answer:
Magnitude of the Frictional force = (mv₀²)/2x₁
Explanation:
For the frictional force to stop the box, it has to produce the deceleration of the box; thereby being the opposing force to the box's motion.
According to Newton's first law of motion
Frictional force = (mass of the box) × (deceleration experienced by the box)
Let the mass of the box be m
Then,
Frictional force = ma
Then we can obtain the deceleration using the equations of motion
v² = u² + 2ax
u = Initial velocity = v₀ m/s
v = Final velocity = 0 m/s (since the box comes to rest at the end)
x = horizontal distance covered = (x₁ - x₀) = x₁ (since x₀ = 0)
a = ?
v² = u² + 2ax
0 = (v₀)² + 2ax₁
2ax₁ = - v₀²
a = - (v₀²)/(2x₁) (minus sign, because it's a deceleration)
Magnitude of the Frictional force = ma = (mv₀²)/2x₁
Answer:
<em><u>Two small metallic spheres with equal mass are suspended as pendulums by strings of length L. The sphereshave the same electric charge and come to equilibrium with each string at an angle of Θ = 10.00° with the vertical. What happens if the electric charges are decreased?</u></em><em><u>(</u></em><em><u>D</u></em><em><u>)</u></em>
Explanation:
<em><u>please click the heart and rate excellent and brainleist to </u></em><em><u>❤</u></em><em><u>☺️</u></em><em><u>☻</u></em><em><u>♨️</u></em><em><u>♨️</u></em><em><u>☻</u></em><em><u>☺️</u></em><em><u>❤</u></em>
The balloon will shrink because the average kinetic energy of gas molecules in a balloon decreases with fall in temperature. Butif we warm the balloon , it will rise.
MARK IT BRANLIEST PLZ..
Answer:
U = 9.1 m/s
Explanation:
from the question we are given the following
time (t) = 1.8 s
angle = 23 degrees
acceleration due to gravity (g) = 9.8 m/s^{2}
let us first calculate the initial velocity (u) which too the first ball to its maximum height from the equation below
v = u + 0.5at
- The final velocity (v) is zero since the ball comes to rest
- The time (t) it takes to get to the maximum height would be half the time it is in the air, t = 0.5 x 1.8 = 0.9
therefore
0 = u - (0.5 x 9.8 x 0.9)
u = 7.9 m/s
for the second ball to get to the maximum height of the first ball, the vertical component of its initial velocity (U) must be the same as the initial velocity of the first ball. therefore
U sin 60 = 7.9
U = 7.9 ÷ sin 60
U = 9.1 m/s
Centripetal acceleration is directed along a radius so it may also be called the radial acceleration. If the speed is not constant, then there is also a tangential acceleration (at). The tangential acceleration is, indeed, tangent to the path of the particle's motion.