1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
arsen [322]
3 years ago
10

Evaluate 82 - 2^3 x5

Mathematics
2 answers:
Anettt [7]3 years ago
6 0

I think the answer is 42.

kkurt [141]3 years ago
6 0

Answer:

the answer would be 42.

Step-by-step explanation:

82 - 2³ × 5

82 - 8 × 5

82 - 40

42

You might be interested in
On a​ map, 1 inch equals 9.4 miles. Two houses are 1.5 inches apart on the map. What is the actual distance between the​ houses?
Mumz [18]

Answer:

14.1 I think

Step-by-step explanation:

4 0
3 years ago
Find the slope. What does it represent?
Blababa [14]

Answer:

2/3 - The temperature increases by 2/3 per minute.

Step-by-step explanation:

Rise = 2

Run = 3

4 0
3 years ago
Read 2 more answers
Which option describes the solution of this system of inequalities? 2x + y 3 and x + 3y 3
Nitella [24]
The answer is 2x +y 3 and i hope i helped :) :)
8 0
3 years ago
Can someone please help with this. Thank you
kykrilka [37]
I’ve never seen that before
5 0
3 years ago
Read 2 more answers
1. Derive this identity from the sum and difference formulas for cosine:
barxatty [35]
\bf \begin{cases}
cos({{ a}} + {{ b}})= cos({{ a}})cos({{ b}})- sin({{ a}})sin({{ b}})\\\\
cos({{ a}} + {{ b}})+sin({{ a}})sin({{ b}})=\boxed{cos({{ a}})cos({{ b}})}\\\\
--------------------\\\\
cos({{ a}} - {{ b}})= cos({{ a}})cos({{ b}}) + sin({{ a}})sin({{ b}})\\\\
cos({{ a}} - {{ b}})-sin({{ a}})sin({{ b}})=\boxed{cos({{ a}})cos({{ b}})}
\end{cases}\\\\
-----------------------------\\\\

\bf cos(a)cos(b)=cos(a)cos(b)\qquad thus
\\\\\\
cos({{ a}} + {{ b}})+sin({{ a}})sin({{ b}})=cos({{ a}} - {{ b}})-sin({{ a}})sin({{ b}})
\\\\\\
sin({{ a}})sin({{ b}})+sin({{ a}})sin({{ b}})=cos({{ a}} - {{ b}})-cos({{ a}} + {{ b}})
\\\\\\
2sin({{ a}})sin({{ b}})=cos({{ a}} - {{ b}})-cos({{ a}} + {{ b}})
\\\\\\
sin({{ a}})sin({{ b}})=\cfrac{cos({{ a}} - {{ b}})-cos({{ a}} + {{ b}})}{2}
\\\\\\
sin({{ a}})sin({{ b}})=\cfrac{1}{2}cos({{ a}} - {{ b}})-cos({{ a}} + {{ b}})
4 0
4 years ago
Other questions:
  • Please Answer if you can!
    11·2 answers
  • Help please thanks.......
    5·1 answer
  • 200+10x=y<br> 140+40x=y<br><br><br> I need that solved
    12·1 answer
  • The answer is 20x + 35 what was the question when in the form of a(bx + c) where a b and c are integers
    8·2 answers
  • Please help vvvvvvvvvvv
    10·1 answer
  • Is the sequence geometric if so identify the common ratio 1/3, 2/9, 4/27, 8/81, 16/243
    11·2 answers
  • Sue graphed the formula for converting temperatures from Fahrenheit to Celsius. If the temperature is 50 degrees Fahrenheit, wha
    9·2 answers
  • The ratio of cats to dogs is 8:9. If<br> there are 27 dogs, how many cats<br> are there<br> (Help)
    11·1 answer
  • The difference of two complementary angles is 20. Find the measure of each angle​
    9·1 answer
  • 100 Points...
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!