<span>Simplifying
7p + 2 = 5p + 8
Reorder the terms:
2 + 7p = 5p + 8
Reorder the terms:
2 + 7p = 8 + 5p
Solving
2 + 7p = 8 + 5p
Solving for variable 'p'.
Move all terms containing p to the left, all other terms to the right.
Add '-5p' to each side of the equation.
2 + 7p + -5p = 8 + 5p + -5p</span>
First, let's fine the decimal of each fraction.
-5 Divided By 6 = -0.83333333333
17 Divided By 18 = 0.94444444444
-2 Divided By 9 = -0.22222222222
-5/6 - 17/18 - (-2/9) = -1.55555555556
10 students per gender:
Boys: <span>four Xs over five and one X over zero, two, three, four, ten, and twelve.
5, 5, 5, 5, 0, 2, 3, 4, 10, 12 </span>→ 0, 2, 3, 4, 5, 5, 5, 5, 10, 12<span>
mean: 5.1
range: 12
</span><span>Girls: three Xs above eight, two Xs above three and four, and one X above two, six and seven.
8, 8, 8, 3, 3, 4, 4, 2, 6, 7 </span>→ 2, 3, 3, 4, 4, 6, 7, 8, 8, 8
<span>mean: 5.3
range: 6
The boys have the higher range while the girls have the higher mean value.
</span><span>
</span>
Given data
<span>sin (x+pi/2)=cos x
</span>now using sin law
sin(a+b)=sin(a)cos(b)+cos(a)sin(b)
now using above values
sin(pi/2+x)=sin(pi/2)cos(x)+cos(pi/2)sin(x)
as we know that
sin(pi/2)=1
cos(pi/2)=0
now putting these values
sin(pi/2+x)=1*cosx+0*1
sin(pi/2+x)=cosx
hence proved that
<span>sin (x+pi/2)=cos x</span>