1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natali 33 [55]
3 years ago
6

What is is 1/4 + 9/10y -3/5y +7/8 written in simplest form?

Mathematics
2 answers:
svp [43]3 years ago
6 0

Answer:

3 • (4y + 15)

-----------------  

      40  

Step-by-step explanation:

Long explanation get ready

STEP

1

:

           7

Simplify   —

           8

Equation at the end of step

1

:

   1   9      3     7

 ((—+(——•y))-(—•y))+—

   4  10      5     8

STEP

2

:

           3

Simplify   —

           5

Equation at the end of step

2

:

   1   9      3     7

 ((—+(——•y))-(—•y))+—

   4  10      5     8

STEP

3

:

            9

Simplify   ——

           10

Equation at the end of step

3

:

   1      9          3y     7

 ((— +  (—— • y)) -  ——) +  —

   4     10          5      8

STEP

4

:

           1

Simplify   —

           4

Equation at the end of step

4

:

   1    9y     3y     7

 ((— +  ——) -  ——) +  —

   4    10     5      8

STEP

5

:

Calculating the Least Common Multiple :

5.1    Find the Least Common Multiple

     The left denominator is :       4

     The right denominator is :       10

       Number of times each prime factor

       appears in the factorization of:

Prime

Factor   Left

Denominator   Right

Denominator   L.C.M = Max

{Left,Right}

2 2 1 2

5 0 1 1

Product of all

Prime Factors  4 10 20

     Least Common Multiple:

     20

Calculating Multipliers :

5.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M

   Denote the Left Multiplier by  Left_M

   Denote the Right Multiplier by  Right_M

   Denote the Left Deniminator by  L_Deno

   Denote the Right Multiplier by  R_Deno

  Left_M = L.C.M / L_Deno = 5

  Right_M = L.C.M / R_Deno = 2

Making Equivalent Fractions :

5.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

  L. Mult. • L. Num.       5

  ——————————————————  =   ——

        L.C.M             20

  R. Mult. • R. Num.      9y • 2

  ——————————————————  =   ——————

        L.C.M               20  

Adding fractions that have a common denominator :

5.4       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

5 + 9y • 2     18y + 5

——————————  =  ———————

    20           20  

Equation at the end of step

5

:

  (18y + 5)    3y     7

 (————————— -  ——) +  —

     20        5      8

STEP

6

:

Calculating the Least Common Multiple :

6.1    Find the Least Common Multiple

     The left denominator is :       20

     The right denominator is :       5

       Number of times each prime factor

       appears in the factorization of:

Prime

Factor   Left

Denominator   Right

Denominator   L.C.M = Max

{Left,Right}

2 2 0 2

5 1 1 1

Product of all

Prime Factors  20 5 20

     Least Common Multiple:

     20

Calculating Multipliers :

6.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M

   Denote the Left Multiplier by  Left_M

   Denote the Right Multiplier by  Right_M

   Denote the Left Deniminator by  L_Deno

   Denote the Right Multiplier by  R_Deno

  Left_M = L.C.M / L_Deno = 1

  Right_M = L.C.M / R_Deno = 4

Making Equivalent Fractions :

6.3      Rewrite the two fractions into equivalent fractions

  L. Mult. • L. Num.      (18y+5)

  ——————————————————  =   ———————

        L.C.M               20  

  R. Mult. • R. Num.      3y • 4

  ——————————————————  =   ——————

        L.C.M               20  

Adding fractions that have a common denominator :

6.4       Adding up the two equivalent fractions

(18y+5) - (3y • 4)     6y + 5

——————————————————  =  ——————

        20               20  

Equation at the end of step

6

:

 (6y + 5)    7

 ———————— +  —

    20       8

STEP

7

:

Calculating the Least Common Multiple :

7.1    Find the Least Common Multiple

     The left denominator is :       20

     The right denominator is :       8

       Number of times each prime factor

       appears in the factorization of:

Prime

Factor   Left

Denominator   Right

Denominator   L.C.M = Max

{Left,Right}

2 2 3 3

5 1 0 1

Product of all

Prime Factors  20 8 40

     Least Common Multiple:

     40

Calculating Multipliers :

7.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M

   Denote the Left Multiplier by  Left_M

   Denote the Right Multiplier by  Right_M

   Denote the Left Deniminator by  L_Deno

   Denote the Right Multiplier by  R_Deno

  Left_M = L.C.M / L_Deno = 2

  Right_M = L.C.M / R_Deno = 5

Making Equivalent Fractions :

7.3      Rewrite the two fractions into equivalent fractions

  L. Mult. • L. Num.      (6y+5) • 2

  ——————————————————  =   ——————————

        L.C.M                 40    

  R. Mult. • R. Num.      7 • 5

  ——————————————————  =   —————

        L.C.M              40  

Adding fractions that have a common denominator :

7.4       Adding up the two equivalent fractions

(6y+5) • 2 + 7 • 5     12y + 45

——————————————————  =  ————————

        40                40  

STEP

8

:

Pulling out like terms :

8.1     Pull out like factors :

  12y + 45  =   3 • (4y + 15)

Leviafan [203]3 years ago
5 0

Answer:

Step-by-step explanation:

\frac{1}{4}+\frac{9}{10}y - \frac{3}{5}y+\frac{7}{8}\\\\=\frac{1}{4}+\frac{7}{8}+\frac{9}{10}y-\frac{3}{5}y\\\\

Combine like terms. 1/4 and 7/8 are like terms and LCD of 4 and 8 is 8

9/10y and -3/5y are like terms and LCD of 10 , 5 is 10

= \frac{1*2}{4*2}+\frac{7}{8}+\frac{9}{10}y-\frac{3*2}{5*2}y\\\\=\frac{2}{8}+\frac{7}{8}+\frac{9}{10}y-\frac{6}{10}y\\\\=\frac{9}{8}+\frac{3}{10}y

You might be interested in
Please Help I'll choose the first answer Brainliest ​
boyakko [2]

Answer:

She spends \frac{4}{5} hours total.

Step-by-step explanation:

Janice spends \frac{1}{10} hour making the bed , \frac{1}{5} hour getting dressed and and half hour eating breakfast.

We have to find the total time she spends for all these activities and that too in simplest form. The main concept here is that when we are adding fractions, the denominators should be common for all the fractions.For that we make 10 as the common denominator here .

Then the fractions are \frac{1}{10} ,\frac{2}{10} ,\frac{5}{10} .

Now we can simply add these fractions.

Sum = \frac{1}{10} +\frac{2}{10} +\frac{5}{10}

sum = \frac{8}{10}

Sum = \frac{4}{5}

6 0
3 years ago
Read 2 more answers
May I please have help with my math ?! Thank you
viva [34]

Answer:

surface area is=2πr×r+πdh

6 0
3 years ago
If a race car averages 138 miles per hour for 4 ​hours, how far does the car​ travel?
Mazyrski [523]

Answer:

552 miles :)

Step-by-step explanation:

138 times 4 = 552

552/4 = 138

7 0
3 years ago
Read 2 more answers
What is the inverse of f(x)=3+2lnx in radical form
butalik [34]

f(x)=3+2\ln x,\ x > 0\\\\y=3+2\ln x\\\\\text{replace x with y and y with x}\\\\3+2\ln y=x\ \ \ \ |-3\\\\2\ln y=x-3\ \ \ \ |:2\\\\\ln y=\dfrac{y-3}{2}\to e^{\ln y}=e^{\frac{y-3}{2}}\\\\y=e^{\frac{y-3}{2}}\\\\Answer:\ f^{-1}(x)=e^{\frac{y-3}{2}}

8 0
3 years ago
Two circles with different radii have chords AB and CD, such that AB is congruent to CD. Are the arcs intersected by these chord
emmainna [20.7K]

The arcs intersected by these chords are not congruent.

Given that two circles with different radii have chords AB and CD, such that AB is congruent to CD.

Let r₁ and r₂ be the radii of two different circles with centers O and O' respectively.

Assuming that the each of the ∠АОВ  and ∠CO'D is less than or equal to π.

Then, we have isosceles triangle AOB and CO'D such that,

AO = OB = r₁,

CO' = O'D = r₂,

Let us assume that r₁< r₂;

We can see that arc(AB) intersected by AB is greater than arc(CD), intersected by the chord CD;

arc(AB) > arc(CD)      .......(1)

Indeed,

arc(AB) = r₁ angle (AOB)

arc(CD) = r₂ angle (CO'D)

So, we have to prove that ;

∠AOB >∠CO'D       ......(2)

Since each angle is less than or equal to π, and so

∠AOB/2  and ∠CO'D/2 is less than or equal to π

it suffices to show that :

tan(AOB/2) >tan(CO'D/2) ......(3)

From triangle AOB :

tan(AOB/2) = AB/(2*r₁)

tan(CO'D/2) = CD/(2*r₂)

Since AB = CD and r₁ < r₂ (As obtained from the result of (3) ), therefore, arc(AB) > arc(CD).

Hence, for two circles with different radii have chords AB and CD, such that AB is congruent to CD but the arcs intersected by these chords are not congruent.

Learn more about congruent from here brainly.com/question/1675117

#SPJ1

6 0
2 years ago
Other questions:
  • Pls help me you guys are brilliant
    6·1 answer
  • Factorise this expression as fully as you can 12x^3-9x^2
    15·1 answer
  • B+0.10b equivalent expression
    12·1 answer
  • Use a minimum of two sentences to describe the process for writing the ln(x)=5 in exponential form.
    13·2 answers
  • N a simple random sample of 219 students at a college, 73 reported that they have at least $1000 of credit card debt.
    5·1 answer
  • using satellite technology the distance between two planes can be measured by keeping track of the angles between them and the d
    5·1 answer
  • PLEASE HELP MEEEEEE :(((
    10·1 answer
  • What is 10000 + 10000
    9·2 answers
  • What is the common difference of the arithmetic
    10·1 answer
  • ( Easy Question ) What should if do when I see my crush, please don't ban this question brainly because I do need help with this
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!