1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natali 33 [55]
3 years ago
6

What is is 1/4 + 9/10y -3/5y +7/8 written in simplest form?

Mathematics
2 answers:
svp [43]3 years ago
6 0

Answer:

3 • (4y + 15)

-----------------  

      40  

Step-by-step explanation:

Long explanation get ready

STEP

1

:

           7

Simplify   —

           8

Equation at the end of step

1

:

   1   9      3     7

 ((—+(——•y))-(—•y))+—

   4  10      5     8

STEP

2

:

           3

Simplify   —

           5

Equation at the end of step

2

:

   1   9      3     7

 ((—+(——•y))-(—•y))+—

   4  10      5     8

STEP

3

:

            9

Simplify   ——

           10

Equation at the end of step

3

:

   1      9          3y     7

 ((— +  (—— • y)) -  ——) +  —

   4     10          5      8

STEP

4

:

           1

Simplify   —

           4

Equation at the end of step

4

:

   1    9y     3y     7

 ((— +  ——) -  ——) +  —

   4    10     5      8

STEP

5

:

Calculating the Least Common Multiple :

5.1    Find the Least Common Multiple

     The left denominator is :       4

     The right denominator is :       10

       Number of times each prime factor

       appears in the factorization of:

Prime

Factor   Left

Denominator   Right

Denominator   L.C.M = Max

{Left,Right}

2 2 1 2

5 0 1 1

Product of all

Prime Factors  4 10 20

     Least Common Multiple:

     20

Calculating Multipliers :

5.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M

   Denote the Left Multiplier by  Left_M

   Denote the Right Multiplier by  Right_M

   Denote the Left Deniminator by  L_Deno

   Denote the Right Multiplier by  R_Deno

  Left_M = L.C.M / L_Deno = 5

  Right_M = L.C.M / R_Deno = 2

Making Equivalent Fractions :

5.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

  L. Mult. • L. Num.       5

  ——————————————————  =   ——

        L.C.M             20

  R. Mult. • R. Num.      9y • 2

  ——————————————————  =   ——————

        L.C.M               20  

Adding fractions that have a common denominator :

5.4       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

5 + 9y • 2     18y + 5

——————————  =  ———————

    20           20  

Equation at the end of step

5

:

  (18y + 5)    3y     7

 (————————— -  ——) +  —

     20        5      8

STEP

6

:

Calculating the Least Common Multiple :

6.1    Find the Least Common Multiple

     The left denominator is :       20

     The right denominator is :       5

       Number of times each prime factor

       appears in the factorization of:

Prime

Factor   Left

Denominator   Right

Denominator   L.C.M = Max

{Left,Right}

2 2 0 2

5 1 1 1

Product of all

Prime Factors  20 5 20

     Least Common Multiple:

     20

Calculating Multipliers :

6.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M

   Denote the Left Multiplier by  Left_M

   Denote the Right Multiplier by  Right_M

   Denote the Left Deniminator by  L_Deno

   Denote the Right Multiplier by  R_Deno

  Left_M = L.C.M / L_Deno = 1

  Right_M = L.C.M / R_Deno = 4

Making Equivalent Fractions :

6.3      Rewrite the two fractions into equivalent fractions

  L. Mult. • L. Num.      (18y+5)

  ——————————————————  =   ———————

        L.C.M               20  

  R. Mult. • R. Num.      3y • 4

  ——————————————————  =   ——————

        L.C.M               20  

Adding fractions that have a common denominator :

6.4       Adding up the two equivalent fractions

(18y+5) - (3y • 4)     6y + 5

——————————————————  =  ——————

        20               20  

Equation at the end of step

6

:

 (6y + 5)    7

 ———————— +  —

    20       8

STEP

7

:

Calculating the Least Common Multiple :

7.1    Find the Least Common Multiple

     The left denominator is :       20

     The right denominator is :       8

       Number of times each prime factor

       appears in the factorization of:

Prime

Factor   Left

Denominator   Right

Denominator   L.C.M = Max

{Left,Right}

2 2 3 3

5 1 0 1

Product of all

Prime Factors  20 8 40

     Least Common Multiple:

     40

Calculating Multipliers :

7.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M

   Denote the Left Multiplier by  Left_M

   Denote the Right Multiplier by  Right_M

   Denote the Left Deniminator by  L_Deno

   Denote the Right Multiplier by  R_Deno

  Left_M = L.C.M / L_Deno = 2

  Right_M = L.C.M / R_Deno = 5

Making Equivalent Fractions :

7.3      Rewrite the two fractions into equivalent fractions

  L. Mult. • L. Num.      (6y+5) • 2

  ——————————————————  =   ——————————

        L.C.M                 40    

  R. Mult. • R. Num.      7 • 5

  ——————————————————  =   —————

        L.C.M              40  

Adding fractions that have a common denominator :

7.4       Adding up the two equivalent fractions

(6y+5) • 2 + 7 • 5     12y + 45

——————————————————  =  ————————

        40                40  

STEP

8

:

Pulling out like terms :

8.1     Pull out like factors :

  12y + 45  =   3 • (4y + 15)

Leviafan [203]3 years ago
5 0

Answer:

Step-by-step explanation:

\frac{1}{4}+\frac{9}{10}y - \frac{3}{5}y+\frac{7}{8}\\\\=\frac{1}{4}+\frac{7}{8}+\frac{9}{10}y-\frac{3}{5}y\\\\

Combine like terms. 1/4 and 7/8 are like terms and LCD of 4 and 8 is 8

9/10y and -3/5y are like terms and LCD of 10 , 5 is 10

= \frac{1*2}{4*2}+\frac{7}{8}+\frac{9}{10}y-\frac{3*2}{5*2}y\\\\=\frac{2}{8}+\frac{7}{8}+\frac{9}{10}y-\frac{6}{10}y\\\\=\frac{9}{8}+\frac{3}{10}y

You might be interested in
Please answer it correctly if it’s correct I will mark you brainliest
Dmitry [639]

Answer:

a=-3/7 b=-2/8 c=-0.2

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Graph the system of linear inequalities, please explain the process in solving this problem so I know how to do ones similar to
Ierofanga [76]

Graph the system of linear inequalities

x + y > 5

- x - y < -5

First we graph x + y >5

Step 1: replace > symbol by = sign

x + y =5

step 2 : Solve the equation for y

x + y =5 (subtract x from both sides)

y = 5 - x

step 3: Now we make a table . plug in some number for x  and find out y

x -----> y

-1 -----> 6   ( y=5-x => y=5-(-1)= 6)

0 -----> 5   ( y=5-x => y=5-(0)= 5)

1 -----> 4   ( y=5-x => y=5-(1)= 4)

Step 4:  we graph the table.

step 5: Shade the region that satisfies our inequality

x + y > 5. Greater than symbol implies that we shade the graph to the right

Graphing second inequality - x - y < -5

All terms have negative sign . so divide all the terms by -1. When we divide an inequality by -1 its sign changes

- x - y < -5 becomes x + y > 5

Follow the same steps to graph this inequality

After dividing the second equation  by -1 , we got the same as the first equation.

So we will get the same graph

Both graphs overlaps

The graph of first and second inequality overlaps

The graph is attached below

4 0
3 years ago
Find the margin of error for a 90% confidence interval when the standard deviation is LaTeX: \sigma= 50????=50 and LaTeX: n = 25
Murrr4er [49]

Answer:

The margin of error  for a 90% confidence interval is 16.4

Step-by-step explanation:

We are given the following in the question:

Sample size, n = 25

Standard deviation = 50

z_{critical}\text{ at}~\alpha_{0.10} = \pm 1.64

Margin of error =

z_{critical}\times \dfrac{\sigma}{\sqrt{n}}

Putting the values, we get,

1.64\times \dfrac{50}{\sqrt{25}} = 16.4

Thus, the margin of error  for a 90% confidence interval is 16.4

8 0
4 years ago
Simplify (8x^3-5x-1)-(7x^2+6x-10)
irakobra [83]

Answer:

8x^3-7x^2-11x+9

Step-by-step explanation:

(8x^3-5x-1)-(7x^2+6x-10)

remove unnesasary ( )

8x^3-5x-1 -(7x^2+6x-10)

the distribute

8x^3-5x-1 -7x^2-6x+10

combine like terms

8x^3-11x+9-7x^2

use the communative property to reorder the equation

8x^3-7x^2-11x+9

4 0
3 years ago
Andre is saving money for college. He had $1,500 in his account. At the end of the year the bank adds 3% to the balance to his a
cricket20 [7]
3. Banks use interest in order to make a cut of the money.
4 0
3 years ago
Read 2 more answers
Other questions:
  • John brought in chocolate bars for the third grade for winning the raffle there are thirty two students and only twenty five can
    11·2 answers
  • A cylinder has a volume of 96 pi cubic centimeters and a diameter of 12 centimeters. What is the height of the cylinder in centi
    14·2 answers
  • What is the solution to the system of equations <br><br> 3x+2y=39<br> 5x-y=13
    7·1 answer
  • Help ASAP with this questions.
    6·1 answer
  • Find the slope between the points (10, -1) and (-8, 6) 5/2 −7/18 2/5 −18/7
    5·1 answer
  • The Smith family took a five-day trip from Baltimore, MD to Albuquerque, NM. The total mileage for the trip was 1860 miles. How
    5·2 answers
  • I need to start with learning my multiplication tables is their a audio for this
    10·2 answers
  • Imma just leave this here imma do brainlyest
    12·1 answer
  • Need help ASAP ..... Which of the following pairs best describes a transformation of Figure 1 into Figure 2 followed by a transf
    13·1 answer
  • Which of these is NOT the net of a cube.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!