PbSO₄ partially dissociates in water. the balanced equation is;
PbSO₄(s) ⇄ Pb²⁺(aq) + SO₄²⁻(aq)
Initial - -
Change -X +X +X
Equilibrium X X
Ksp = [Pb²⁺(aq)] [SO₄²⁻(aq)]
1.6 x 10⁻⁸ = X * X
1.6 x 10⁻⁸ = X²
X = 1.3 x 10⁻⁴ M
Hence the Pb²⁺ concentration in underground water is 1.3 x 10⁻⁴ M.
[Pb²⁺] = 1.3 x 10⁻⁴ M.
= 1.3 x 10⁻⁴ mol / L x 207 g / mol
= 26.91 ppm
I believe it would be 1.660539040 × 10−24 gram.
Answer : The correct option is, 13.7 mole
Solution : Given,
Moles of
= 27.4 moles
The given balanced chemical reaction is,

From the balanced chemical reaction, we conclude that
As, 2 moles of
react with 1 moles of 
So, 27.4 moles of
react with
moles of 
Therefore, the number of moles of oxygen
required are, 13.7 moles
Answer:
the most best answer is 50.1 you never find such type of answer