Answer:
A
Step-by-step explanation:
C is located at (5,3).
If you want to reflect this over the y-axis, you need to have the same distance that (5,3) is to the y-axis on both sides.
If you look at your graph you should see that (5,3) is 5 units a way from the y-axis so when you put it on the other side it should be 5 units a way also.
So the reflection will give you (-5,3)
Answer:
The answer to your question is:
Step-by-step explanation:

Factorize 
Factorize 
Simplify 
Answer:
Looking at the first question, it's asking what best describes the probability of tossing a number less than 6 on a number cube that has 6 numbers. Impossible means that it will never land on it, for example asking what the probability of landing on 7 is. Unlikely is something that doesn't happen often. The best option that fits our scenario is option C, likely.
Looking at the second question, it's asking what the probability that the teacher chooses a girl in his class. There are 15 girls and a total of 27 students in the class so we take the probability by doing 15/27. We can narrow both the numerator and the denominator using 3 which gives us 5/9. Therefore, the best option that fits our scenario is option C, 5/9.
Finally, looking at the last question, it's asking what the theoretical probability that the coin will land on heads on the next toss. Theoretical probability doesn't consider how much times Murray tossed the coin, the only thing it cares about is what the actual probability of tossing a coin is. Therefore that makes it a 50% chance of landing on a heads and a 50% chance of landing on a tails. The best option that first our scenario is option B, 1/2.
<u><em>Hope this helps! Let me know if you have any questions</em></u>
Answer: The number is 26.
Step-by-step explanation:
We know that:
The nth term of a sequence is 3n²-1
The nth term of a different sequence is 30–n²
We want to find a number that belongs to both sequences (it is not necessarily for the same value of n) then we can use n in one term (first one), and m in the other (second one), such that n and m must be integer numbers.
we get:
3n²- 1 = 30–m²
Notice that as n increases, the terms of the first sequence also increase.
And as n increases, the terms of the second sequence decrease.
One way to solve this, is to give different values to m (m = 1, m = 2, etc) and see if we can find an integer value for n.
if m = 1, then:
3n²- 1 = 30–1²
3n²- 1 = 29
3n² = 30
n² = 30/3 = 10
n² = 10
There is no integer n such that n² = 10
now let's try with m = 2, then:
3n²- 1 = 30–2² = 30 - 4
3n²- 1 = 26
3n² = 26 + 1 = 27
n² = 27/3 = 9
n² = 9
n = √9 = 3
So here we have m = 2, and n = 3, both integers as we wanted, so we just found the term that belongs to both sequences.
the number is:
3*(3)² - 1 = 26
30 - 2² = 26
The number that belongs to both sequences is 26.