The statement “Only the “Conclusion” section discusses whether the original hypothesis was supported, and both sections suggest further research”, best describes the difference between analysis and conclusion.
Answer: Option 4
<u>Explanation:
</u>
In research, we do experiments and derive the results. Then, those results were analyzed by us. In this analysis part, we compare our results with the related results published elsewhere. Also, we correlate the similarities and point out the differences between our analysis and other reported results.
In conclusion part, we have to check hypothesis or it supported. And, we summarise our analysis and figure out the further research need to be done on that to improvise our research. So, the final statement is the correct option which best describes the difference between analysis and conclusion.
Please, observe that it is not right to say that a substance content heat.
Heat is not something that a body or substance content. Heat is the transmission of energy due to difference of temperatures.
An endothermic reactions is that where the reactants abosorb energy from the surroundings to occur. The products, then, will be higher in energy than the reactants while the surroundings get colder.
Answer:
c.
Explanation:
it moves in slow convection currents, hope this helps!
Answer:
-85 °C
Explanation:
O and S are in the same group( Group 16). Since S is below O it's atomic mass is higher than O. So molar mass of H2S is higher than H2O. The strength of Vanderwaal Interactions ( London dispersion forces) increases when the molar mass increases. However, only H2O can form H bonds with each other. This is because electronegativity of O is higher than S and therefore H in H2O has a higher partial positive charge than H of H2S.
H bond dominate among these 2 types of forces so the strength of attractions between molecules is higher in H2O than H2S. Therefore more energy should be supplied for H2O to break inter
molecular forces and convert from solid to liquid state than H2S. So mpt of H2O must be higher than that of H2S.
Answer:
310.53 g of Cu.
Explanation:
The balanced equation for the reaction is given below:
CuSO₄ + Zn —> ZnSO₄ + Cu
Next, we shall determine the mass of CuSO₄ that reacted and the mass Cu produced from the balanced equation. This can be obtained as follow:
Molar mass of CuSO₄ = 63.5 + 32 + (16×4)
= 63.5 + 32 + 64
= 159.5 g/mol
Mass of CuSO₄ from the balanced equation = 1 × 159.5 = 159.5 g
Molar mass of Cu = 63.5 g/mol
Mass of Cu from the balanced equation = 1 × 63.5 = 63.5 g
Summary:
From the balanced equation above,
159.5 g of CuSO₄ reacted to produce 63.5 g of Cu.
Finally, we shall determine the mass of Cu produced by the reaction of 780 g of CuSO₄. This can be obtained as follow:
From the balanced equation above,
159.5 g of CuSO₄ reacted to produce 63.5 g of Cu.
Therefore, 780 g of CuSO₄ will react to produce = (780 × 63.5)/159.5 = 310.53 g of Cu.
Thus, 310.53 g of Cu were obtained from the reaction.