Answer:
a) 6 mol H2O
b) this reaction is endothermic
c) when 1 mol of CO2 is used, in the reaction they occur 0.5025 KJ
Explanation:
balanced eq:
- 6CO2 + 6H2O + 2678 KJ ↔ C6H12O6 + 6O2
6 - C - 6
18 - O - 18
12 - H - 12
a) mol H2O = 6 mol.......from balanced equation.
b) ΔE = 2678 KJ....... this reaction absorbs heat ( ΔE is positive )
c) 1 gramo C6H12O6 ≅ 4 cal
- Mw C6H12O6 = 180.156 g/mol
⇒ 1mol CO2 * ( mol C6H12O6 / 6mol CO2 ) =0.166 mol C6H12O6
⇒ 0.166mol C6H12O6 * ( 180.156 g C6H12O6 / mol ) = 30.026g C6H12O6
⇒30.026 gC6H12O6 * ( 4 cal / gC6H12O6 ) * ( Kcal / 1000 cal ) * (4184 J / Kcal ) * ( KJ / 1000 J ) = 0.5025 KJ C6H12O6.
Answer:
5.4 M.
Explanation:
- At complete neutralization: It is known that the no. of millimoles of acid equal that of the base.
<em>(MV)acid = (MV)NaOH</em>
M of acid = ??? M, V of acid = 35.0 mL.
M of NaOH = 3.0 M, V of NaOH = 63.0 mL.
∴ M of acid = (MV)NaOH / (V)acid = (3.0 M)(63.0 mL)/(35.0 mL) = 5.4 M.
Answer:
Hydrogen and oxygen bonds
Explanation:
Answer:
When the volume will be reduced to 2.50 L, the temperature will be reduced to a temperature of 230.9K
Explanation:
Step 1: Data given
A sample of sulfur hexafluoride gas occupies a volume of 5.10 L
Temperature = 198 °C = 471 K
The volume will be reduced to 2.50 L
Step 2 Calculate the new temperature via Charles' law
V1/T2 = V2/T2
⇒with V1 = the initial volume of sulfur hexafluoride gas = 5.10 L
⇒with T1 = the initial temperature of sulfur hexafluoride gas = 471 K
⇒with V2 = the reduced volume of the gas = 2.50 L
⇒with T2 = the new temperature = TO BE DETERMINED
5.10 L / 471 K = 2.50 L / T2
T2 = 2.50 L / (5.10 L / 471 K)
T2 = 230.9 K = -42.1
When the volume will be reduced to 2.50 L, the temperature will be reduced to a temperature of 230.9K
The mass number represents the summation of the number of protons and the number of neutrons in the nucleus of an atom.
We are given that the mass number is 64 and that the number of neutrons is 35. Therefore:
number of protons = 64 - 35 = 29 protons
In ground state, number of protons in an atom is equal to the number of electrons. Therefore,
number of electrons = 29 electron
Using the periodic table, we will find that the element that has 29 electrons in ground state is copper.
The nuclide symbol of copper is shown in the attached image.