To solve this problem, we must recall that the formula
for velocity assuming linear motion:
v = d / t
Where,
v = velocity
d = distance
t = time
For condition 1: bus travelling on a level road
v1 = d1 / t1
<span>(v2 + 20) = (449 – d2) / 4 --->1</span>
For condition 2: bus travelling on a winding road
v2 = d2 / t2
<span>v2 = d2 / 5 --->2</span>
Combining equations 1 and 2:
(d2 / 5) + 20 = (449 – d2) / 4
0.8 d2 + 80 = 449 – d2
1.8 d2 = 369
d2 = 205 miles
Using equation 2, find for v2:
v2 = 205 / 5
v2 = 41 mph
Since v1 = v2 + 20
v1 = 41 + 20
v1 = 61 mph
Therefore
<span>the
average speed on the level road is 61 mph.</span>
Sum and Difference Formula for Cosine: cos(α±β)= cosαcosβ <span>∓ sin</span>αsinβ
cos(8x+2x)=cosαcosβ-sinαsinβ
cos(10x)=cosαcosβ-sinαsinβ
Iehehevevveebhejejehevbeebhebeheh
Answer:
x = 29
Step-by-step explanation:
-3(3 + x) + 4(x - 6) = -4
Distribute -3 by the first set of parentheses and distribute 4 by the second set of parentheses.
-9 - 3x + 4x - 24 = -4
Collect like terms on the left side.
x - 33 = -4
Add 33 to both sides.
x = 29