1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ziro4ka [17]
2 years ago
11

An interior beam supports the floor of a classroom in a school building. The beam spans 26 ft. and the tributary width is 16 ft.

Dead load is 20 psf. Find:
a. Basic floor live load Lo in psf
b. Reduced floor live load L in psf
c. Uniformly distributed total load to the beam in lb/ft.
d. Compare the loading in part c with the alternate concentrated load requried by the Code. Which loading is more critical for bending, shear, and deflection.?
Engineering
1 answer:
saul85 [17]2 years ago
7 0

Answer:

a. L_o  = 40 psf

b. L ≈ 30.80 psf

c. The uniformly distributed total load for the beam = 812.8 ft./lb

d. The alternate concentrated load is more critical to bending , shear and deflection

Explanation:

The given parameters of the beam the beam are;

The span of the beam = 26 ft.

The width of the tributary, b = 16 ft.

The dead load, D = 20 psf.

a. The basic floor live load is given as follows;

The uniform floor live load, = 40 psf

The floor area, A = The span × The width = 26 ft. × 16 ft. = 416 ft.²

Therefore, the uniform live load, L_o  = 40 psf

b. The reduced floor live load, L in psf. is given as follows;

L = L_o \times \left ( 0.25 + \dfrac{15}{\sqrt{k_{LL} \cdot A_T} } \right)

For the school, K_{LL} = 2

Therefore, we have;

L = 40 \times \left ( 0.25 + \dfrac{15}{\sqrt{2 \times 416} } \right) = 30.80126 \ psf

The reduced floor live load, L ≈ 30.80 psf

c. The uniformly distributed total load for the beam, W_d = b × W_{D + L} =

∴  W_d =  = 16 × (20 + 30.80) ≈ 812.8 ft./lb

The uniformly distributed total load for the beam, W_d = 812.8 ft./lb

d. For the uniformly distributed load, we have;

V_{max} = 812.8 × 26/2 = 10566.4 lbs

M_{max} =  812.8 × 26²/8 = 68,681.6 ft-lbs

v_{max} = 5×812.8×26⁴/348/EI = 4,836,329.333/EI

For the alternate concentrated load, we have;

P_L = 1000 lb

W_{D} = 20 × 16 = 320 lb/ft.

V_{max} = 1,000 + 320 × 26/2 = 5,160 lbs

M_{max} =  1,000 × 26/4 + 320 × 26²/8 = 33,540 ft-lbs

v_{max} = 1,000 × 26³/(48·EI) + 5×320×26⁴/348/EI = 2,467,205.74713/EI

Therefore, the loading more critical to bending , shear and deflection, is the alternate concentrated load

You might be interested in
A 3.52 kg steel ball is tossed upward from a height of 6.93 meters above the floor with a vertical velocity of 2.99 m/s. What is
Dafna1 [17]

Answer : The final velocity of the ball is, 12.03 m/s

Explanation :

By the 3rd equation of motion,

v^2-u^2=2as

where,

s = distance covered by the object = 6.93 m

u = initial velocity  = 2.99 m/s

v = final velocity = ?

a = acceleration = 9.8m/s^2

Now put all the given values in the above equation, we get the final velocity of the ball.

v^2-(2.99m/s)^2=2\times (9.8m/s^2)\times (6.93m)

v=12.03m/s

Thus, the final velocity of the ball is, 12.03 m/s

7 0
3 years ago
Users of E85 see a drop in gas mileage because ethanol can't produce the same
liraira [26]

Answer:

A

Explanation:

Due to ethanol's lower energy content, FFVs operating on E85 get roughly 15% to 27% fewer miles per gallon than when operating on regular gasoline, depending on the ethanol content.

7 0
2 years ago
2.) A fluid moves in a steady manner between two sections in a flow
Talja [164]

Answer:

250\ \text{lbm/min}

625\ \text{ft/min}

Explanation:

A_1 = Area of section 1 = 10\ \text{ft}^2

V_1 = Velocity of water at section 1 = 100 ft/min

v_1 = Specific volume at section 1 = 4\ \text{ft}^3/\text{lbm}

\rho = Density of fluid = 0.2\ \text{lb/ft}^3

A_2 = Area of section 2 = 2\ \text{ft}^2

Mass flow rate is given by

m=\rho A_1V_1=\dfrac{A_1V_1}{v_1}\\\Rightarrow m=\dfrac{10\times 100}{4}\\\Rightarrow m=250\ \text{lbm/min}

The mass flow rate through the pipe is 250\ \text{lbm/min}

As the mass flowing through the pipe is conserved we know that the mass flow rate at section 2 will be the same as section 1

m=\rho A_2V_2\\\Rightarrow V_2=\dfrac{m}{\rho A_2}\\\Rightarrow V_2=\dfrac{250}{0.2\times 2}\\\Rightarrow V_2=625\ \text{ft/min}

The speed at section 2 is 625\ \text{ft/min}.

3 0
3 years ago
Select the correct answer.
cricket20 [7]

Answer:

A.

The power generated by a wind farm is not constant because of irregular wind patterns.

5 0
3 years ago
A particular motor rotates at 3000 revolutions per minute. What is its speed in rad/sec, and how many seconds does it takes to m
Leno4ka [110]

Answer:

ω=314.15 rad/s.

0.02 s.

Explanation:

Given that

Motor speed ,N= 3000 revolutions per minute

N= 3000 RPM

The speed of the motor in rad/s given as

\omega=\dfrac{2\pi N}{60}\ rad/s

Now by putting the values in the above equation

\omega=\dfrac{2\pi \times 3000}{60}\ rad/s

ω=314.15 rad/s

Therefore the speed in rad/s will be 314.15 rad/s.

The speed in rev/sec given as

\omega=\dfrac{ 3000}{60}\ rad/s

ω= 50 rev/s

It take 1 sec to cover 50 revolutions

That is why to cover 1 revolution it take

\dfrac{1}{50}=0.02\ s

4 0
2 years ago
Other questions:
  • A plate clutch is used to connect a motor shaft running at 1500rpm to shaft 1. The motor is rated at 4 hp. Using a service facto
    7·1 answer
  • What is the first step in the problem-solving process, as well as in the engineering design process?
    7·1 answer
  • What’s a pnp transitor?
    5·2 answers
  • A 400-MVA, 240-kV/24-kV, three-phase Y-A transformer has an equivalent series impedance of 1.2 + j6 N per phase referred to the
    13·1 answer
  • Local technology is foundation for modern technology? justufy this statement with example.​
    12·1 answer
  • A package is thrown down an incline at A with a velocity of 1 m/s. The package slides along the surface ABC to a conveyor belt w
    13·1 answer
  • How many kg / day of NaOH must be added to neutralize a waste stream generated by an industry producing 90,800 kg / day of sulfu
    6·2 answers
  • ______________ help protect the lower legs and feet from heat hazards like molten metal and welding sparks. A) Safety shoesB) Le
    7·1 answer
  • A motor vehicle has a mass of 1200kg and the road wheels have a radius of 360mm. The engine rotating parts have a moment of iner
    5·1 answer
  • Answer the question faster please
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!