1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
miv72 [106K]
3 years ago
13

What is the fastest plane in the world

Engineering
2 answers:
Aleonysh [2.5K]3 years ago
7 0

Answer:

Lockheed SR-71 Blackbird

Explanation:

Phoenix [80]3 years ago
5 0
Lockheed SR-71 Blackbird
You might be interested in
Isormophous phase diagram
shusha [124]

Answer:

Phase diagrams represent the relationship between temperature and the composition of phases present at equilibrium. An isomorphous system is one in which the solid has the same structure for all compositions. The phase diagram shown is the diagram for Cu-Ni, which is an isomorphous alloy system.

Hope it help you friend

6 0
3 years ago
A 1000 W iron utilizes a resistance wire which is 20 inches long and has a diameter of 0.08 inches. Determine the rate of heat g
SSSSS [86.1K]

Answer:

The rate of heat generation in the wire per unit volume is 5.79×10^7 Btu/hrft^3

Heat flux is 9.67×10^7 Btu/hrft^2

Explanation:

Rate of heat generation = 1000 W = 1000/0.29307 = 3412.15 Btu/hr

Area (A) = πD^2/4

Diameter (D) = 0.08 inches = 0.08 in × 3.2808 ft/39.37 in = 0.0067 ft

A = 3.142×0.0067^2/4 = 3.53×10^-5 ft^2

Volume (V) = A × Length

L = 20 inches = 20 in × 3.2808 ft/39.37 in = 1.67 ft

V = 3.53×10^-5 × 1.67 = 5.8951×10^-5 ft^3

Rate of heat generation in the wire per unit volume = 3412.15 Btu/hr ÷ 5.8951×10^-5 ft^3 = 5.79×10^7 Btu/hrft^3

Heat flux = 3412.15 Btu/hr ÷ 3.53×10^-5 ft^2 = 9.67×10^7 Btu/hrft^2

3 0
3 years ago
An insulated, vertical piston-cylinder device initially contains 10kg of water, 6kg of which is in the vapor phase. The mass of
Alexeev081 [22]

Answer:

a)120C

b)29kg

Explanation:

Hello!

To solve this exercise follow the steps below

1. we will call 1 the initial state, 2 the steam that enters and 3 the final state

2. We find the quality of the initial state, dividing the mass of steam by the total mass.

q1=\frac{6kg}{10kg} =0.6

3 Find the internal energy in the three states using thermodynamic tables

note:Through laboratory tests, thermodynamic tables were developed, these allow to know all the thermodynamic properties of a substance (entropy, enthalpy, pressure, specific volume, internal energy etc ..)  

through prior knowledge of two other properties such as pressure and temperature.  

u1=IntEnergy(Water;x=0,6(quality);P=200kPa) =1719KJ/kg

u2=IntEnergy(Water;t=350;P=5000kPa) =2808KJ/kg

u3=IntEnergy(Water;x=1;P=200kPa) =2529KJ/kg

4. use the internal energy and pressure to find the temperature in state 3, using thermodynamic tables

T3=Temperature(Water;P=200kPa;u=u3=2529KJ/kg)=120C

5. Use the first law of thermodynamics in the system, it states that the initial energy in a system must be equal to the final

m1u1+m2u2=(m1+m2)u3

where

m1=inital mass=10kg

m2=the mass of the steam that has entered.

solve for m2

(m1)(u1-u3)=(m2)(u3)-(m2)(u2)

m2=m1\frac{u1-u3}{u3-u2} =10\frac{1719-2529}{2529-2808} =29kg

7 0
3 years ago
What type of spring is mounted on a mcpherson strut suspension system?
AysviL [449]

Answer:

Coil Spring

Explanation:

6 0
2 years ago
A counter-flow double pipe heat exchanger is heat heat water from 20 degrees Celsius to 80 degrees Celsius at the rate of 1.2 kg
lakkis [162]

Answer:

L=107.6m

Explanation:

Cold water in: m_{c}=1.2kg/s, C_{c}=4.18kJ/kg\°C, T_{c,in}=20\°C, T_{c,out}=80\°C

Hot water in: m_{h}=2kg/s, C_{h}=4.18kJ/kg\°C, T_{h,in}=160\°C, T_{h,out}=?\°C

D=1.5cm=0.015m, U=649W/m^{2}K, LMTD=?\°C, A_{s}=?m^{2},L=?m

Step 1: Determine the rate of heat transfer in the heat exchanger

Q=m_{c}C_{c}(T_{c,out}-T_{c,in})

Q=1.2*4.18*(80-20)

Q=1.2*4.18*(80-20)

Q=300.96kW

Step 2: Determine outlet temperature of hot water

Q=m_{h}C_{h}(T_{h,in}-T_{h,out})

300.96=2*4.18*(160-T_{h,out})

T_{h,out}=124\°C

Step 3: Determine the Logarithmic Mean Temperature Difference (LMTD)

dT_{1}=T_{h,in}-T_{c,out}

dT_{1}=160-80

dT_{1}=80\°C

dT_{2}=T_{h,out}-T_{c,in}

dT_{2}=124-20

dT_{2}=104\°C

LMTD = \frac{dT_{2}-dT_{1}}{ln(\frac{dT_{2}}{dT_{1}})}

LMTD = \frac{104-80}{ln(\frac{104}{80})}

LMTD = \frac{24}{ln(1.3)}

LMTD = 91.48\°C

Step 4: Determine required surface area of heat exchanger

Q=UA_{s}LMTD

300.96*10^{3}=649*A_{s}*91.48

A_{s}=5.07m^{2}

Step 5: Determine length of heat exchanger

A_{s}=piDL

5.07=pi*0.015*L

L=107.57m

7 0
3 years ago
Other questions:
  • A brittle intermetallics specimen is tested with a bending test. The specimen's width 0.45 in and thickness 0.20 in. The length
    5·1 answer
  • What is the composition, in atom percent, of an alloy that contains 44.5 lbmof Ag, 83.7 lbmof Au, and 5.3 lbmof Cu? What is the
    9·1 answer
  • Which type of irrigation conserves more water than other types of irrigation?
    8·1 answer
  • Which of the following is a advantage of a chain and sprocket over a pulley and belt system?
    7·1 answer
  • An intranet is a restricted network that relies on Internet technologies to provide an Internet-like environment within the comp
    11·1 answer
  • The organic acid, ACOOH, reacts reversibly with the alcohol BOH, to form the ester ACOOB according to the stoichiometric equatio
    6·1 answer
  • A 2.5 m wide rough continuous foundation is placed in the ground at 1 m depth. There is bedrock present at 1 m depth below the b
    12·1 answer
  • Complete the sentence to identify a useful advance in the culinary arts.
    8·1 answer
  • How would you design a wheelchair for wheelchair-using basketball players? Would you make it more or less massive?
    11·1 answer
  • Which thematic group is involved in the transmission and generation of electrical power?
    10·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!