1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fynjy0 [20]
3 years ago
15

A consultant has proposed that a pulse-jet baghouse with bags that are 15 cm in diameter and 5 m in length. Estimate the net num

ber of bags required if the manufacturer’s recommended air-to-cloth ratio for aggregate plants in 0.05 m/s, and a requirement that 1/8 of the bags are off-line for cleaning
Engineering
1 answer:
Dmitry_Shevchenko [17]3 years ago
5 0

Answer:

0,5 bags

Total number of bags = 0.5 +  4 = 4.5 bags or 5 bags

Explanation:

Convert 15cm to meters  = 15/100 = 0.15m

Flow rate Q = Area x velocity

= π d x v

= π (0.15) x 1

= 0.4712

A = Q/v = 0.4712/ 0.05

=<u> 9.435 m^2</u>

<u></u>

The net number of bags =  A/π dh

= 9.425/π (0.15)(5)

= <u>4 bags </u>

<u></u>

Requirement that 1/8 of the bags are off-line for cleaning

= Net number of bags / 8

= 4/8

= <u>0.5 bag or 1bag</u>

<u></u>

<u>Total number of bags </u>

<u>= 4bags + 1bag </u>

<u>= 5bags </u>

<u></u>

You might be interested in
Consider a plane composite wall that is composed of two materials of thermal conductivities kA = 0.1 W/m*K and kB = 0.04 W/m*K a
nadya68 [22]

Answer:

q=39.15 W/m²

Explanation:

We know that

Thermal resistance due to conductivity given as

R=L/KA

Thermal resistance due to heat transfer coefficient given as

R=1/hA

Total thermal resistance

R_{th}=\dfrac{L_A}{AK_A}+\dfrac{L_B}{AK_B}+\dfrac{1}{Ah_1}+\dfrac{1}{Ah_2}+\dfrac{1}{Ah_3}

Now by putting the values

R_{th}=\dfrac{0.01}{0.1A}+\dfrac{0.02}{0.04A}+\dfrac{1}{10A}+\dfrac{1}{20A}+\dfrac{1}{0.3A}

R_{th}=4.083/A\ K/W

We know that

Q=ΔT/R

Q=\dfrac{\Delta T}{R_{th}}

Q=A\times \dfrac{200-40}{4.086}

So heat transfer per unit volume is 39.15 W/m²

q=39.15 W/m²

4 0
3 years ago
Multiple Choice
ra1l [238]
I need more details to your question
4 0
3 years ago
Read 2 more answers
A medium-sized jet has a 3.8-mm-diameter fuselage and a loaded mass of 85,000 kg. The drag on an airplane is primarily due to th
SCORPION-xisa [38]

Answer:

F_{thrust} ≅ 111 KN

Explanation:

Given that;

A medium-sized jet has a 3.8-mm-diameter i.e diameter (d) = 3.8

mass = 85,000 kg

drag co-efficient (C) = 0.37

(velocity (v)= 230 m/s

density (ρ) = 1.0 kg/m³

To calculate the thrust; we need to determine the relation of the drag force; which is given as:

F_{drag} = \frac{1}{2} × CρAv²

where;

ρ = density of air wind.

C = drag co-efficient

A = Area of the jet

v = velocity of the jet

From the question, we can deduce that the jet is in motion with a constant speed; as such: the net force acting on the jet in the air = 0

SO, F_{drag}-F_{thrust} = 0

We can as well say:

F_{drag}= F_{thrust}

We can now replace F_{thrust} with F_{drag} in the above equation.

Therefore, F_{thrust} = \frac{1}{2} × CρAv²

The A which stands as the area of the jet is given by the formula:

A=\frac{\pi d^2}{4}

We can now have a new equation after substituting our A into the previous equation as:

F_{thrust} = \frac{1}{2} × Cρ (\frac{\pi d^2}{4})v^2

Substituting our data from above; we have:

F_{thrust} = \frac{1}{2} × (0.37)(1.0kg/m^3)(\frac{\pi(3.8m)^2 }{4})(230m/s)^2

F_{thrust} = \frac{1}{8}   (0.37)(1.0kg/m^3)({\pi(3.8m)^2 })(230m/s)^2

F_{thrust} = 110,990N

F_{thrust}  in N (newton) to KN (kilo-newton) will be:

F_{thrust} = (110,990N)*\frac{1KN}{1,000N}

F_{thrust} = 110.990 KN

F_{thrust} ≅ 111 KN

In conclusion, the jet engine needed to provide 111 KN thrust in order to cruise at 230 m/s at an altitude where the air density is 1.0 kg/m³.

5 0
3 years ago
A horizontal curve of a two-lane undivided highway (12-foot lanes) has a radius of 678 feet to the center line of the roadway. A
OLEGan [10]

Answer:

maximum speed for safe vehicle operation = 55mph

Explanation:

Given data :

radius ( R ) = 678 ft

old building located ( m )= 30 ft

super elevation = 0.06

<u>Determine the maximum speed for safe vehicle operation </u>

firstly calculate the stopping sight distance

m = R ( 1 - cos \frac{28.655*S}{R} )  ----  ( 1 )

R = 678  

m ( horizontal sightline ) = 30 ft

back to equation 1

30 = 678 ( 1 - cos (28.655 *s / 678 ) )

( 1 - cos (28.655 *s / 678 ) )  = 30 / 678 = 0.044

cos \frac{28.65 *s }{678}  = 1.044

hence ; 28.65 * s = 678 * 0.2956

s = 6.99 ≈ 7 ft

next we will calculate the design speed ( u ) using the formula below

S = 1.47 ut  + \frac{u^2}{30(\frac{a}{3.2} )-G1}  ----  ( 2 )

t = reaction time,  a = vehicle acceleration, G1 = grade percentage

assuming ; t = 2.5 sec , a = 11.2 ft/sec^2, G1 = 0

back to equation 2

6.99 = 1.47 * u * 2.5 + \frac{u^2}{30[(11.2/32.2)-0 ]}

3.675 u  + 0.0958 u^2 - 6.99 = 0

u ( 3.675 + 0.0958 u ) = 6.99

5 0
3 years ago
A rich industrialist was found murdered in his house. The police arrived at the scene at 11:00 PM. The temperature of the corpse
d1i1m1o1n [39]

Answer:

The dude was killed around 6:30PM

Explanation:

Newton's law of cooling states:

    T = T_m + (T_0-T_m)e^{kt}

where,

T_0 = initial temp

T_m = temp of room

T = temp after t hours

k = how fast the temp is changing

t = time (hours)

T_0 = 31     because the body was initlally 31ºC when the police found it

T_m = 22   because that was the room temp

T = 30  because the body temp drop to 30ºC after 1 hour

t = 1 because that's the time it took for the body temp to drop to 30ºC

k=???   we don't know k so we must solve for this

rearrange the equation to solve for k

T = T_m + (T_0-T_m)e^{kt}

T - T_m= (T_0-T_m)e^{kt}

\frac{T - T_m}{(T_0-T_m)}= e^{kt}

ln(\frac{T - T_m}{T_0-T_m})=kt

\frac{ln(\frac{T - T_m}{T_0-T_m})}{t}=k

plug in the numbers to solve for k

k = \frac{ln(\frac{T - T_m}{T_0-T_m})}{t}

k = \frac{ln(\frac{30 - 22}{31-22})}{1}

k=ln(\frac{8}{9})

Now that we know the value for k, we can find the moment the murder occur. A crucial information that the question left out is the temperature of a human body when they're still alive. A living human body is about 37ºC. We can use that as out initial temperature to solve this problem because we can assume that the freshly killed body will be around 37ºC.

T_0 = 37     because the body was 37ºC right after being killed

T_m = 22   because that was the room temp

T = 31  because the body temp when the police found it

k=ln(\frac{8}{9})   we solved this earlier

t = ???   we don't know how long it took from the time of the murder to when the police found the body

Rearrange the equation to solve for t

T = T_m + (T_0-T_m)e^{kt}

T - T_m= (T_0-T_m)e^{kt}

\frac{T - T_m}{(T_0-T_m)}= e^{kt}

ln(\frac{T - T_m}{T_0-T_m})=kt

\frac{ln(\frac{T - T_m}{T_0-T_m})}{k}=t

plug in the values

t=\frac{ln(\frac{T - T_m}{T_0-T_m})}{k}

t=\frac{ln(\frac{31 - 22}{37-22})}{ln(8/9)}

t=\frac{ln(3/5)}{ln(8/9)}

t=\frac{ln(3/5)}{ln(8/9)}

t ≈ 4.337 hours from the time the body was killed to when the police found it.

The police found the body at 11:00PM so subtract 4.337 from that.

11 - 4.33 = 6.66 ≈ 6:30PM

7 0
4 years ago
Other questions:
  • A circuit-switching scenario in whichNcs users, each requiring a bandwidth of 25 Mbps, must share a link of capacity 150 Mbps.
    12·1 answer
  • Researchers compared protein intake among three groups of postmenopausal women: (1) women eating a standard American diet (STD),
    14·1 answer
  • Water, in a 150 in^3 rigid tank, initially has a temperature of 70°F and an enthalpy of 723.5 Btu/lbm. Heat is added until the w
    13·1 answer
  • Consider laminar, fully developed flow in a channel of constant surface temperature Ts. For a given mass flow rate and channel l
    15·1 answer
  • (TCO 1) Name one disadvantage of fixed-configuration switches over modular switches. a. Ease of management b. Port security b. F
    6·1 answer
  • Technician A says that in a worm gear steering system, most excessive steering free play is usually found in the gearbox. Techni
    13·1 answer
  • Characteristics of 3 types of soil​
    10·1 answer
  • The use of seatbelts in a car has significantly reduced the number of crash fatalities. Which statement best explains how societ
    11·1 answer
  • Write down about the water source selection criteria​
    9·1 answer
  • When cutting a FBD through an axial member, assume that the internal force is tension and draw the force arrow _______ the cut s
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!