Answer:
first is the parentheses, (3+2)=5 next is the exponent 5^2=25, next is the division 5 / 5 = 1, then the multiplication 4*1=4 and then you add 4+25=29. so the answer is 29.
Sheeeeeesh bro same name ayoooo??
Answer
D I think
Explanation
Answer:
the maximum length of the specimen before deformation is 0.4366 m
Explanation:
Given the data in the question;
Elastic modulus E = 124 GPa = 124 × 10⁹ Nm⁻²
cross-sectional diameter D = 4.2 mm = 4.2 × 10⁻³ m
tensile load F = 1810 N
maximum allowable elongation Δl = 0.46 mm = 0.46 × 10⁻³ m
Now to calculate the maximum length
for the deformation, we use the following relation;
= [ Δl × E × π × D² ] / 4F
so we substitute our values into the formula
= [ (0.46 × 10⁻³) × (124 × 10⁹) × π × (4.2 × 10⁻³)² ] / ( 4 × 1810 )
= 3161.025289 / 7240
= 0.4366 m
Therefore, the maximum length of the specimen before deformation is 0.4366 m