Answer:
Check the explanation
Explanation:
to know the lift per unit span (N/m) that is expected to be measured when the wing attack angle is 4°
as well as the corresponding section lift coefficient and die moment coefficient .
Kindly check the attached image below to see the step by step explanation to the above question.
Answer:
and my favorite song is popular loner
Explanation:
my favorite rapper is rod wave
Answer:
the quality of the refrigerant exiting the expansion valve is 0.2337 = 23.37 %
Explanation:
given data
pressure p1 = 1.4 MPa = 14 bar
temperature t1 = 32°C
exit pressure = 0.08 MPa = 0.8 bar
to find out
the quality of the refrigerant exiting the expansion valve
solution
we know here refrigerant undergoes at throtting process so
h1 = h2
so by table A 14 at p1 = 14 bar
t1 ≤ Tsat
so we use equation here that is
h1 = hf(t1) = 332.17 kJ/kg
this value we get from table A13
so as h1 = h2
h1 = h(f2) + x(2) * h(fg2)
so
exit quality = 
exit quality = 
so exit quality = 0.2337 = 23.37 %
the quality of the refrigerant exiting the expansion valve is 0.2337 = 23.37 %
This question is incomplete, the complete question is;
For a steel alloy it has been determined that a carburizing heat treatment of 11.3 h duration at Temperature T1 will raise the carbon concentration to 0.44 wt% at a point 1.8 mm from the surface. A separate experiment is performed at T2 that doubles the diffusion coefficient for carbon in steel.
Estimate the time necessary to achieve the same concentration at a 4.9 mm position for an identical steel and at the same carburizing temperature T2.
Answer:
the required time to achieve the same concentration at a 4.9 is 83.733 hrs
Explanation:
Given the data in the question;
treatment time t₁ = 11.3 hours
Carbon concentration = 0.444 wt%
thickness at surface x₁ = 1.8 mm = 0.0018 m
thickness at identical steel x₂ = 4.9 mm = 0.0049 m
Now, Using Fick's second law inform of diffusion
/ Dt = constant
where D is constant
then
/ t = constant
/ t₁ =
/ t₂
t₂ = t₁
t₂ = t₁
/ 
t₂ = (
/
)t₁
t₂ =
/
× t₁
so we substitute
t₂ =
0.0049 / 0.0018
× 11.3 hrs
t₂ = 7.41 × 11.3 hrs
t₂ = 83.733 hrs
Therefore, the required time to achieve the same concentration at a 4.9 is 83.733 hrs